It has been acknowledged that excess body weight increases the risk of colorectal cancer (CRC); however, there is little evidence on the impact of body mass index (BMI) on CRC patients’ long-term oncologic results in Asian populations. We studied the influence of BMI on overall survival (OS), disease-free survival (DFS), and CRC-specific survival rates in CRC patients from the administrative claims datasets of Taiwan using the Kaplan–Meier survival curves and the log-rank test to estimate the statistical differences among BMI groups. Underweight patients (<18.50 kg/m2) presented higher mortality (56.40%) and recurrence (5.34%) rates. Besides this, they had worse OS (aHR:1.61; 95% CI: 1.53–1.70; p-value: < 0.0001) and CRC-specific survival (aHR:1.52; 95% CI: 1.43–1.62; p-value: < 0.0001) rates compared with those of normal weight patients (18.50–24.99 kg/m2). On the contrary, CRC patients belonging to the overweight (25.00–29.99 kg/m2), class I obesity (30.00–34.99 kg/m2), and class II obesity (≥35.00 kg/m2) categories had better OS, DFS, and CRC-specific survival rates in the analysis than the patients in the normal weight category. Overweight patients consistently had the lowest mortality rate after a CRC diagnosis. The associations with being underweight may reflect a reverse causation. CRC patients should maintain a long-term healthy body weight.
Single photon emission computed tomography (SPECT) has been employed to detect Parkinson’s disease (PD). However, analysis of the SPECT PD images was mostly based on the region of interest (ROI) approach. Due to limited size of the ROI, especially in the multi-stage classification of PD, this study utilizes deep learning methods to establish a multiple stages classification model of PD. In the retrospective study, the 99mTc-TRODAT-1 was used for brain SPECT imaging. A total of 202 cases were collected, and five slices were selected for analysis from each subject. The total number of images was thus 1010. According to the Hoehn and Yahr Scale standards, all the cases were divided into healthy, early, middle, late four stages, and HYS I~V six stages. Deep learning is compared with five convolutional neural networks (CNNs). The input images included grayscale and pseudo color of two types. The training and validation sets were 70% and 30%. The accuracy, recall, precision, F-score, and Kappa values were used to evaluate the models’ performance. The best accuracy of the models based on grayscale and color images in four and six stages were 0.83 (AlexNet), 0.85 (VGG), 0.78 (DenseNet) and 0.78 (DenseNet).
Anesthesia assessment is most important during surgery. Anesthesiologists use electrocardiogram (ECG) signals to assess the patient’s condition and give appropriate medications. However, it is not easy to interpret the ECG signals. Even physicians with more than 10 years of clinical experience may still misjudge. Therefore, this study uses convolutional neural networks to classify ECG image types to assist in anesthesia assessment. The research uses Internet of Things (IoT) technology to develop ECG signal measurement prototypes. At the same time, it classifies signal types through deep neural networks, divided into QRS widening, sinus rhythm, ST depression, and ST elevation. Three models, ResNet, AlexNet, and SqueezeNet, are developed with 50% of the training set and test set. Finally, the accuracy and kappa statistics of ResNet, AlexNet, and SqueezeNet in ECG waveform classification were (0.97, 0.96), (0.96, 0.95), and (0.75, 0.67), respectively. This research shows that it is feasible to measure ECG in real time through IoT and then distinguish four types through deep neural network models. In the future, more types of ECG images will be added, which can improve the real-time classification practicality of the deep model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.