The neuroimaging techniques such as dopaminergic imaging using Single Photon Emission Computed Tomography (SPECT) with 99mTc-TRODAT-1 have been employed to detect the stages of Parkinson’s disease (PD). In this retrospective study, a total of 202 99mTc-TRODAT-1 SPECT imaging were collected. All of the PD patient cases were separated into mild (HYS Stage 1 to Stage 3) and severe (HYS Stage 4 and Stage 5) PD, according to the Hoehn and Yahr Scale (HYS) standard. A three-dimensional method was used to estimate six features of activity distribution and striatal activity volume in the images. These features were skewness, kurtosis, Cyhelsky’s skewness coefficient, Pearson’s median skewness, dopamine transporter activity volume, and dopamine transporter activity maximum. Finally, the data were modeled using logistic regression (LR) and support vector machine (SVM) for PD classification. The results showed that SVM classifier method produced a higher accuracy than LR. The sensitivity, specificity, PPV, NPV, accuracy, and AUC with SVM method were 0.82, 1.00, 0.84, 0.67, 0.83, and 0.85, respectively. Additionally, the Kappa value was shown to reach 0.68. This claimed that the SVM-based model could provide further reference for PD stage classification in medical diagnosis. In the future, more healthy cases will be expected to clarify the false positive rate in this classification model.
Single photon emission computed tomography (SPECT) has been employed to detect Parkinson’s disease (PD). However, analysis of the SPECT PD images was mostly based on the region of interest (ROI) approach. Due to limited size of the ROI, especially in the multi-stage classification of PD, this study utilizes deep learning methods to establish a multiple stages classification model of PD. In the retrospective study, the 99mTc-TRODAT-1 was used for brain SPECT imaging. A total of 202 cases were collected, and five slices were selected for analysis from each subject. The total number of images was thus 1010. According to the Hoehn and Yahr Scale standards, all the cases were divided into healthy, early, middle, late four stages, and HYS I~V six stages. Deep learning is compared with five convolutional neural networks (CNNs). The input images included grayscale and pseudo color of two types. The training and validation sets were 70% and 30%. The accuracy, recall, precision, F-score, and Kappa values were used to evaluate the models’ performance. The best accuracy of the models based on grayscale and color images in four and six stages were 0.83 (AlexNet), 0.85 (VGG), 0.78 (DenseNet) and 0.78 (DenseNet).
Anesthesia assessment is most important during surgery. Anesthesiologists use electrocardiogram (ECG) signals to assess the patient’s condition and give appropriate medications. However, it is not easy to interpret the ECG signals. Even physicians with more than 10 years of clinical experience may still misjudge. Therefore, this study uses convolutional neural networks to classify ECG image types to assist in anesthesia assessment. The research uses Internet of Things (IoT) technology to develop ECG signal measurement prototypes. At the same time, it classifies signal types through deep neural networks, divided into QRS widening, sinus rhythm, ST depression, and ST elevation. Three models, ResNet, AlexNet, and SqueezeNet, are developed with 50% of the training set and test set. Finally, the accuracy and kappa statistics of ResNet, AlexNet, and SqueezeNet in ECG waveform classification were (0.97, 0.96), (0.96, 0.95), and (0.75, 0.67), respectively. This research shows that it is feasible to measure ECG in real time through IoT and then distinguish four types through deep neural network models. In the future, more types of ECG images will be added, which can improve the real-time classification practicality of the deep model.
With the increase of extreme weather events, the frequency and severity of urban flood events in the world are increasing drastically. Therefore, this study develops ARMT (automatic combined ground weather radar and CCTV (Closed Circuit Television System) images for real-time flood monitoring), which integrates real-time ground radar echo images and automatically estimates a rainfall hotspot according to the cloud intensity. Furthermore, ARMT combines CCTV image capturing, analysis, and Fourier processing, identification, water level estimation, and data transmission to provide real-time warning information. Furthermore, the hydrograph data can serve as references for relevant disaster prevention, and response personnel may take advantage of them and make judgements based on them. The ARMT was tested through historical data input, which showed its reliability to be between 83% to 92%. In addition, when applied to real-time monitoring and analysis (e.g., typhoon), it had a reliability of 79% to 93%. With the technology providing information about both images and quantified water levels in flood monitoring, decision makers can quickly better understand the on-site situation so as to make an evacuation decision before the flood disaster occurs as well as discuss appropriate mitigation measures after the disaster to reduce the adverse effects that flooding poses on urban areas.
The B-mode ultrasound usually contains scattering speckle noise which reduces the detailed resolution of the target and is regarded as an intrinsic noise that interferes with diagnostic precision. The aim of this study was to classify hepatic steatosis through applying attenuation correction with a phantom to reduce speckle noise in liver ultrasound tomography in patients. This retrospective study applied three randomized groups signifying different liver statuses. A total of 114 patients’ effective liver ultrasound images—30 normal, 44 fatty, and 40 cancerous—were included. The proposed depth attenuation correction method was first applied to images. Three regions of interest were manually drawn on the images. Next, five feature values for the regions of interest were calculated. Finally, the hybrid method of logistic regression and support vector machine was employed to classify the ultrasound images with 10-fold cross-validation. The accuracy, kappa statistic, and mean absolute error of the proposed hybrid method were 87.5%, 0.812, and 0.119, respectively, which were higher than those of the logistic regression method—75.0%, 0.548, and 0.280—or those of the support vector machine method—75.7%, 0.637, and 0.293—respectively. Therefore, the hybrid method has been proven to be more accurate and have better performance and less error than either single method. The hybrid method provided acceptable accuracy of classification in three liver ultrasound image groups after depth attenuation correction. In the future, the deep learning approaches may be considered for the application in classifying liver ultrasound images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.