Eucalyptus polybractea is a small, multi-stemmed tree, which is widely cultivated in Australia for the production of Eucalyptus oil. We report the hybrid assembly of the E. polybractea genome utilizing both short- and long-read technology. We generated 44 Gb of Illumina HiSeq short reads and 8 Gb of Nanopore long reads, representing approximately 83 and 15 times genome coverage, respectively. The hybrid-assembled genome, after polishing, contained 24,864 scaffolds with an accumulated length of 523 Mb (N50 = 40.3 kb; BUSCO-calculated genome completeness of 94.3%). The genome contained 35,385 predicted protein-coding genes detected by combining homology-based and de novo approaches. We have provided the first assembled genome based on hybrid sequences from the highly diverse Eucalyptus subgenus Symphyomyrtus, and revealed the value of including long-reads from Nanopore technology for enhancing the contiguity of the assembled genome, as well as for improving its completeness. We anticipate that the E. polybractea genome will be an invaluable resource supporting a range of studies in genetics, population genomics and evolution of related species in Eucalyptus.
Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Methods Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson’s trichrome stain and Western blot. Results Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Conclusions Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.
The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread to become a worldwide emergency. Early identification of patients at risk of progression may facilitate more individually aligned treatment plans and optimized utilization of medical resource. Here we conducted a multicenter retrospective study involving patients with moderate COVID-19 pneumonia to investigate the utility of chest computed tomography (CT) and clinical characteristics to risk-stratify the patients. Our results show that CT severity score is associated with inflammatory levels and that older age, higher neutrophil-to-lymphocyte ratio (NLR), and CT severity score on admission are independent risk factors for short-term progression. The nomogram based on these risk factors shows good calibration and discrimination in the derivation and validation cohorts. These findings have implications for predicting the progression risk of COVID-19 pneumonia patients at the time of admission. CT examination may help risk-stratification and guide the timing of admission.
Vitamin C (L-ascorbic acid, ascorbate, VC) is a potential chemotherapeutic agent for cancer patients. However, the anti-tumor effects of pharmacologic VC on hepatocellular carcinoma (HCC) and liver cancer stem cells (CSCs) remain to be fully elucidated. Panels of human HCC cell lines as well as HCC patient-derived xenograft (PDX) models were employed to investigate the anti-tumor effects of pharmacologic VC. The use of VC and the risk of HCC recurrence were examined retrospectively in 613 HCC patients who received curative liver resection as their initial treatment. In vitro and in vivo experiments further demonstrated that clinically achievable concentrations of VC induced cell death in liver cancer cells and the response to VC was correlated with sodium-dependent vitamin C transporter 2 (SVCT-2) expressions. Mechanistically, VC uptake via SVCT-2 increased intracellular ROS, and subsequently caused DNA damage and ATP depletion, leading to cell cycle arrest and apoptosis. Most importantly, SVCT-2 was highly expressed in liver CSCs, which promoted their self-renewal and rendered them more sensitive to VC. In HCC cell lines xenograft models, as well as in PDX models, VC dramatically impaired tumor growth and eradicated liver CSCs. Finally, retrospective cohort study showed that intravenous VC use was linked to improved disease-free survival (DFS) in HCC patients (adjusted HR = 0.622, 95% CI 0.487 to 0.795, p < 0.001). Our data highlight that pharmacologic VC can effectively kill liver cancer cells and preferentially eradicate liver CSCs, which provide further evidence supporting VC as a novel therapeutic strategy for HCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.