During blood feeding, mosquitoes inject saliva containing a mixture of molecules that inactivate or inhibit various components of the hemostatic response to the bite injury as well as the inflammatory reactions produced by the bite, to facilitate the ingestion of blood. However, the molecular functions of the individual saliva components remain largely unknown. Here, we describe anopheline antiplatelet protein (AAPP) isolated from the saliva of Anopheles stephensi, a human malaria vector mosquito. AAPP exhibited a strong and specific inhibitory activity toward collagen-induced platelet aggregation. The inhibitory mechanism involves direct binding of AAPP to collagen, which blocks platelet adhesion to collagen and inhibits the subsequent increase in intracellular Ca(2+) concentration ([Ca(2+)]i). The binding of AAPP to collagen effectively blocked platelet adhesion via glycoprotein VI (GPVI) and integrin alpha(2)beta(1). Cell adhesion assay showed that AAPP inhibited the binding of GPVI to collagen type I and III without direct effect on GPVI. Moreover, intravenously administered recombinant AAPP strongly inhibited collagen-induced platelet aggregation ex vivo in rats. In summary, AAPP is a malaria vector mosquito-derived specific antagonist of receptors that mediate the adhesion of platelets to collagen. Our study may provide important insights for elucidating the effects of mosquito blood feeding against host hemostasis.
A novel electrocardiogram (ECG) signal de-noising and baseline wander correction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet threshold is proposed. Although CEEMDAN is based on empirical mode decomposition (EMD), it represents a significant improvement of the original EMD by overcoming the mode-mixing problem. However, there has been no previous study on using CEEMDAN to de-noise ECG signals, to the authors’ best knowledge. In the proposed method, the original noisy ECG signal is decomposed into a series of intrinsic mode functions (IMFs) sorted from high to low frequency by CEEMDAN. Each IMF is then analyzed by the autocorrelation method to find out the first few high frequency IMFs containing random noise, and these IMFs should be de-noised by the wavelet threshold. The zero-crossing rate (ZCR) of all IMFs, including final residue, are computed, and the IMFs with ZCR less than a certain value are removed. Finally, the remaining IMFs are reconstructed to obtain the clean ECG signal. The proposed algorithm is validated through experiments using the MIT–BIH ECG databases, and the results show that the random noise in the ECG signal can be effectively suppressed, and at the same time the baseline wander can be corrected efficiently.
BackgroundmiR-20b has been shown to be aberrantly expressed in several tumor types. However, the clinical significance of miR-20b in the prognosis of patients with gastric cancer (GC) is poorly understood, and the exact role of miR-20b in GC remains unclear.Materials and methodsThe expression of miR-20b was detected in 102 patients with GC by a SYBR Green assay and was compared with the expression in matched adjacent normal tissue specimens. The aim of the present study was to investigate the association of the expression of miR-20b with the clinicopathological characteristics and the overall survival of patients with GC as analyzed by Kaplan–Meier analysis and Cox proportional hazards regression models.ResultsOur results showed that miR-20b expression was upregulated in GC tissue compared with normal mucosa (P=0.00). Furthermore, miR-20b expression was positively correlated with advanced lymph node metastasis (P=0.041), tumor node metastasis stage (P=0.000), and deeper and distant metastasis (P=0.031). The overall survival rate of patients with GC was significantly lower in those whose tumors expressed high levels of miR-20b mRNA compared with those whose tumors expressed low levels of miR-20b mRNA (P=0.019).ConclusionmiR-20b may serve as a potential molecular marker for the prognosis of GC.
Modulation of gene expression in tumors has the potential of being a surrogate end-point biomarker for chemoprevention. Thus, we determined the modulation by chemopreventive agents of the protein and mRNA expression of genes in rat colon tumors. Male F344 rats were administered three weekly injections of 15 mg/kg azoxymethane. Forty-seven weeks later, they received aspirin (600), calcium chloride (50 000), 2-(carboxyphenyl) retinamide (2-CPR, 315), alpha-difluoromethylornithine (DFMO, 3000), piroxicam (200), quercetin (33 600), 9-cis retinoic acid (9-cis RA, 30), rutin (3000), or sulindac (280) in their diet at the indicated mg/kg concentration for 7 days and were then killed. In colon tumors relative to the mucosa, the protein and mRNA levels of c-myc were increased, while the levels of p16 and p27 were decreased. Calcium chloride, DFMO, piroxicam and sulindac administered for 7 days decreased the mitotic index and reduced the protein and mRNA levels of c-myc in colon tumors. Calcium chloride, DFMO and piroxicam increased the protein and mRNA levels of p16 and along with sulindac increased the protein level of p27, but not its mRNA. The other agents failed to modulate both the mitotic index and the expression of the genes. The ability of the chemopreventive agents to prevent colon tumors was determined. Male F344 rats were administered three weekly injections of 15 mg/kg azoxymethane and 8 weeks later they were administered aspirin, 2-CPR, DFMO, piroxicam, 9-cis RA and rutin in their diet. The rats were killed 26 weeks after they started to receive the chemopreventive agents. The multiplicity of colon tumors was reduced by DFMO and piroxicam, increased by rutin and not affected by the other agents. Hence, agents that prevented colon cancer decreased the mitotic index and altered the expression of c-myc, p16 and p27 suggesting that modulation in the expression of these genes are potential biomarkers for chemopreventive activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.