This paper presents the design and process of two highly sensitive sensors working in the terahertz band. The sensors comprise the quartz substrate, medium, reflection plate, and metal resonant layer with a symmetrical single-slot patch array. The devices help study the electrically induced permittivity of two liquid crystals in different frequency bands and at different voltages, and the experimental data verify that both liquid crystals have a large birefringence. Based on experimental results, the sensitivity of the fabricated sensor is 47.03 GHz/RIU in the frequency range 90–140 GHz. Similarly, the other fabricated sensor has a sensitivity of 112.47 GHz/RIU in the frequency range 325–500 GHz. The results show that both sensors have superior sensing properties and potential applications in biological and chemical liquid sensing.
A terahertz phase shifter based on liquid-crystal-integrated metasurface is proposed, which contains a three-slotted array structure and comb grating. The orientation of the liquid crystal molecules can be completely controlled by the direction of the electric field. From the acquired experimental results, it was demonstrated that the phase shift exceeds 300° in the range of 378.6 - 390.8 GHz, whereas the maximum phase shift reaches 374.1° at 383.1 GHz. The molecular reorientation transient process induced by the external electric field in the liquid crystal was measured and analyzed. Based on the molecular reorientation mechanism, which can be divided into three processes, a rapid modulation mechanism was demonstrated. From the performance of the proposed device, an actively controllable phase delay and reflectance with a cycle switching time of approximately 0.3 s was achieved, which is remarkably faster than the usual cycle time that exceeds 8 s. Our work provides useful ideas for improving the response speed of LC-based terahertz devices, which is considered of great significance for several applications, in terms of terahertz reconfigurable devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.