Thiocyanate (SCN) adsorption on an Au electrode is examined using surface-enhanced Raman scattering (SERS) measurements, along with detailed density functional theory (DFT) calculations. Both the calculation and the spectroscopic measurements show that three different geometries are adopted by SCN adsorption in the potential region studied (0.0 V
The family of AZARYPHOS (aza–aryl–phosphane) phosphane ligands, containing a phosphine unit and sterically shielded nitrogen lone pairs in the ligand periphery, is introduced as a tool for developing ambifunctional catalysis by the metal center and nitrogen lone pairs in the ligand sphere. General synthetic strategies have been developed to synthesize over 25 examples of structurally diverse (6‐aryl‐2‐pyridyl)phosphanes (ARPYPHOS), (6‐alkyl‐2‐pyridyl)phosphanes (ALPYPHOS), 4,6‐disubsituted 1,3‐diazin‐2‐ylphosphanes or 1,3,5‐triazin‐2‐ylphosphanes, quinazolinylphosphanes, quinolinylphosphanes, and others. The scalable syntheses proceed in a few steps. The incorporation of AZARYPHOS ligands (L) into complexes [RuCp(L)2(MeCN)][PF6] (Cp=cyclopentadienyl) gives catalysts for the anti‐Markovnikov hydration of terminal alkynes of the highest known activities. Electronic and steric ligand effects modulate the reaction kinetics over a range of two orders of magnitude. These results highlight the importance of using structurally diverse ligand families in the process of developing cooperative ambifunctional catalysis by a metal and its ligand.
Bulky heterocycles: A highly selective catalytic cross‐coupling reaction of tertiary Grignard reagents with chloroazacycles provides a shortcut to heterocyclic building blocks for applications in pharmaceutical chemistry and supramolecular chemistry, or as ligand precursors in transition‐metal catalysis (see scheme).
The catalytic activity of [CpRu(L)(2)(MeCN)]PF(6) (L = 2-diphenylphosphinopyridine with bulky groups at C-6) for anti-Markovnikov hydration of terminal alkynes to aldehydes is retained when one heterocyclic ligand L is replaced by L' = PPh(3). Equal amounts of CpRuCl(PPh(3))(2) (1) and phosphane L in acetone solution equilibrate to a mixture of 1, CpRuCl(L)(PPh(3)) (2), and CpRuCl(L)(2) (3), which acts as highly active in situ catalyst for preparative anti-Markovnikov hydration of alkynes in water-rich media (2 mol % [Ru], 60 °C, 3-18 h in 4:1 (v/v) acetone/water). Reactions were completed in <15 min at 160 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.