Objective To understand the clinical characteristics of COVID-19 patients with clinically diagnosed bacterial co-infection (CDBC), and therefore contributing to their early identification and prognosis estimation. Method 905 COVID-19 patients from 7 different centers were enrolled. The demography data, clinical manifestations, laboratory results, and treatments were collected accordingly for further analyses. Results Around 9.5% of the enrolled COVID-19 patients were diagnosed with CDBC. Older patients or patients with cardiovascular comorbidities have increased CDBC probability. Increased body temperature, longer fever duration, anhelation, gastrointestinal symptoms, illness severity, intensive care unit attending, ventilation treatment, glucocorticoid therapy, longer hospitalization time are correlated to CDBC. Among laboratory results, increased white blood cell counting (mainly neutrophil), lymphocytopenia, increased procalcitonin, erythrocyte sedimentation rate, C-reaction protein, D-dimer, blood urea nitrogen, lactate dehydrogenase, brain natriuretic peptide, myoglobin, blood sugar and decreased albumin are also observed, indicating multiple system functional damage. Radiology results suggested ground glass opacity mixed with high density effusion opacities and even pleural effusion. Conclusion The aged COVID-19 patients with increased inflammatory indicators, worse lymphopenia and cardiovascular comorbidities are more likely to have clinically diagnosed bacterial co-infection. Moreover, they tend to have severer clinical manifestations and increased probability of multiple system functional damage.
Macrophages play an important role in the pathogenesis of COPD. Macrophage polarization towards the M2 phenotype has been observed in the lung tissues of COPD patients and cigarette smokers. The molecular basis of this process remains unclear, and it has not been completely illuminated in animal models of emphysema. In our study, we combined cigarette smoke (CS) exposure with intraperitoneal injection of cigarette smoke extract (CSE) to build an emphysema model. We found by immunohistochemical staining and flow cytometry that the expression level of CD206 and the ratio of M2 to M1 macrophages was increased in emphysematous mice. We also demonstrated that decreased protein level for phosphatase and tensin homology deleted on chromosome ten (PTEN) and increased total protein levels for phosphorylation -protein kinase B (p-AKT) in the lung tissue of emphysematous mice and in CSE-treated RAW264.7 cells. In both bone marrow-derived macrophages (BMDMs) from emphysematous mice and CSE-treated RAW264.7 cells, we observed by RT-PCR that the mRNA levels of M2 macrophage-related markers and cytokines were increased. Furthermore, M1 macrophage-related markers and cytokines were decreased. Meanwhile we treated BMDMs from emphysematous mice and CSE-treated RAW264.7 cells with the phosphoinositide 3-kinase (PI3K)/Akt inhibitor (LY294002), we observed a reduction in RNA levels of M2 macrophage-related markers and cytokines. In conclusion, we confirmed that macrophage M2 polarization was induced in emphysematous mice generated by CS exposure combined with intraperitoneal injection of CSE. We also showed that M2 polarization was mediated through PTEN/PI3k/AKT pathway activation.
The fast-track rehabilitation program can significantly decrease the complications and shorten the time of postoperative hospital stay of patients after resection colorectal cancer.
BackgroundCOPD is a multi-pathogenesis disease mainly caused by smoking. A further understanding of the mechanism of smoking-related COPD might contribute to preventions and treatments of this disease in the early stages. This study was designed to identify the characteristics of M2 macrophages in COPD for a better understanding about their potential role.Materials and methodsCOPD models were built in the C57BL/6 mouse by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The modeling efficiency was evaluated by lung function and hematoxylin and eosin (H&E) staining. The number of different macrophage phenotypes was detected by immunohistochemical staining (IHS) of CD206, CD86 and CD68 on the lung tissue paraffin section. The RAW264.7 cells were polarized toward the M2 phenotype by interleukin IL-4 and confirmed by a flow cytometer. The gene expression levels of TGF-βRII, Smad2, Smad3 and Smad7 in CSE-treated M2 macrophages were detected by real-time reverse transcription polymerase chain reaction (RT-PCR). The expression levels of TGF-β/Smad pathway-related makers (TGF-βRII, p-Smad2, p-Smad3, Smad7 and TGF-β) in alveolar M2 macrophages were detected by two consecutive paraffin section IHS.ResultsThe COPD model is well established, which is confirmed by the lung function test and lung H&E staining. The whole number of macrophages and the ratio of M2/M1 phenotype are both increased (p<0.05). The level of CD206+ cells in IL-4-stimulated RAW264.7 cells is up to 93.4%, which is confirmed by a flow cytometer. The gene expression of TGF-βRII, Smad2, Smad3 and Smad7 are all enhanced (p<0.05) in CES-treated M2 macrophages, which is detected by RT-PCR. The protein levels of TGF-β/Smad pathway-related markers are all increased in alveolar M2 macrophages of the model group.ConclusionThis study found an increased deposition of alveolar M2 macrophages in the mouse COPD model and an increased expression level of TGF-β/Smad pathway in M2 macrophages, both in vitro and in vivo, induced by CSE and/or CS exposure, indicating that M2 macrophages might contribute to COPD through changing of phenotype and TGF-β/Smad pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.