We developed a theoretical framework to prove the existence and quantify the Waddington landscape as well as chreode-biological paths for development and differentiation. The cells can have states with the higher probability ones giving the different cell types. Different cell types correspond to different basins of attractions of the probability landscape. We study how the cells develop from undifferentiated cells to differentiated cells from landscape perspectives. We quantified the Waddington landscape through construction of underlying probability landscape for cell development. We show the developmental process proceeds as moving from undifferentiated to the differentiated basins of attractions. The barrier height of the basins of attractions correlates with the escape time that determines the stability of cell types. We show that the developmental process can be quantitatively described and uncovered by the biological paths on the quantified Waddington landscape from undifferentiated to the differentiated cells. We found the dynamics of the developmental process is controlled by a combination of the gradient and curl force on the landscape. The biological paths often do not follow the steepest descent path on the landscape. The landscape framework also quantifies the possibility of reverse differentiation process such as cell reprogramming from differentiated cells back to the original stem cell. We show that the biological path of reverse differentiation is irreversible and different from the one for differentiation process. We found that the developmental process described by the underlying landscape and the associated biological paths is relatively stable and robust against the influences of environmental perturbations.
We established a theoretical framework for studying nonequilibrium networks with two distinct natures essential for characterizing the global probabilistic dynamics: the underlying potential landscape and the corresponding curl flux. We applied the idea to a biochemical oscillation network and found that the underlying potential landscape for the oscillation limit cycle has a distinct closed ring valley (Mexican hat-like) shape when the fluctuations are small. This global landscape structure leads to attractions of the system to the ring valley. On the ring, we found that the nonequilibrium flux is the driving force for oscillations. Therefore, both structured landscape and flux are needed to guarantee a robust oscillating network. The barrier height separating the oscillation ring and other areas derived from the landscape topography is shown to be correlated with the escaping time from the limit cycle attractor and provides a quantitative measure of the robustness for the network. The landscape becomes shallower and the closed ring valley shape structure becomes weaker (lower barrier height) with larger fluctuations. We observe that the period and the amplitude of the oscillations are more dispersed and oscillations become less coherent when the fluctuations increase. We also found that the entropy production of the whole network, characterizing the dissipation costs from the combined effects of both landscapes and fluxes, decreases when the fluctuations decrease. Therefore, less dissipation leads to more robust networks. Our approach is quite general and applicable to other networks, dynamical systems, and biological evolution. It can help in designing robust networks. entropy production ͉ stability ͉ attractor ͉ landscape ͉ nongradient force ͉ cellular network
Differentiation from a multipotent stem or progenitor state to a mature cell is an essentially irreversible process. The associated changes in gene expression patterns exhibit time-directionality. This "arrow of time" in the collective change of gene expression across multiple stable gene expression patterns (attractors) is not explained by the regulated activation, the suppression of individual genes which are bidirectional molecular processes, or by the standard dynamical models of the underlying gene circuit which only account for local stability of attractors. To capture the global dynamics of this nonequilibrium system and gain insight in the time-asymmetry of state transitions, we computed the quasipotential landscape of the stochastic dynamics of a canonical gene circuit that governs branching cell fate commitment. The potential landscape reveals the global dynamics and permits the calculation of potential barriers between cell phenotypes imposed by the circuit architecture. The generic asymmetry of barrier heights indicates that the transition from the uncommitted multipotent state to differentiated states is inherently unidirectional. The model agrees with observations and predicts the extreme conditions for reprogramming cells back to the undifferentiated state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.