We developed a theoretical framework to prove the existence and quantify the Waddington landscape as well as chreode-biological paths for development and differentiation. The cells can have states with the higher probability ones giving the different cell types. Different cell types correspond to different basins of attractions of the probability landscape. We study how the cells develop from undifferentiated cells to differentiated cells from landscape perspectives. We quantified the Waddington landscape through construction of underlying probability landscape for cell development. We show the developmental process proceeds as moving from undifferentiated to the differentiated basins of attractions. The barrier height of the basins of attractions correlates with the escape time that determines the stability of cell types. We show that the developmental process can be quantitatively described and uncovered by the biological paths on the quantified Waddington landscape from undifferentiated to the differentiated cells. We found the dynamics of the developmental process is controlled by a combination of the gradient and curl force on the landscape. The biological paths often do not follow the steepest descent path on the landscape. The landscape framework also quantifies the possibility of reverse differentiation process such as cell reprogramming from differentiated cells back to the original stem cell. We show that the biological path of reverse differentiation is irreversible and different from the one for differentiation process. We found that the developmental process described by the underlying landscape and the associated biological paths is relatively stable and robust against the influences of environmental perturbations.
We have developed pLink, software for data analysis of cross-linked proteins coupled with mass-spectrometry analysis. pLink reliably estimates false discovery rate in cross-link identification and is compatible with multiple homo- or hetero-bifunctional cross-linkers. We validated the program with proteins of known structures, and we further tested it on protein complexes, crude immunoprecipitates and whole-cell lysates. We show that it is a robust tool for protein-structure and protein-protein-interaction studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.