Deformation of flexible electronics can lead to reconfigurable electrical properties, controllable deployment, and tunable working modes, but approaches to actuate flexible electronics are quite limited. A promising method involves using magnetic fields to yield simple displacement of magnetic membranes. However, realization of complex multiaxial bending and rotations of magnetic membranes remains challenging. Here, flexible origami magnetic membranes with programmable magnetic polarities are used to generate complex spatial deformation through coupling with an external magnetic field and interaction among intrinsic magnetism. The membranes can work as standalone flexible actuators and serve as substrates to trigger spontaneous deformation of the carrying flexible devices such as antennas, energy harvesters, and light‐emitting diode arrays. The membranes can travel on a dry surface or in a liquid environment. They also exhibit the capability to reversibly capture and release objects traveling at 326 mm s–1. Flexible devices on the membranes can offer tunable gains and frequencies as well as novel folding and releasing mechanisms determined by the complex magnetic polarities of the underneath membranes. The origami magnetic membranes can be combined to yield more complicate patterns and magnetic polarities, leading to innovative applications in surgical robots, tunable antennas, and various reconfigurable flexible electronics.
Coupling soft bodies and dynamic motions with multifunctional flexible electronics is challenging, but is essential in satisfying the urgent and soaring demands of fully soft and comprehensive robotic systems that can perform tasks in spite of rigorous spatial constraints. Here, the mobility and adaptability of liquid droplets with the functionality of flexible electronics, and techniques to use droplets as carriers for flexible devices are combined. The resulting active droplets (ADs) with volumes ranging from 150 to 600 µL can conduct programmable functions, such as sensing, actuation, and energy harvesting defined by the carried flexible devices and move under the excitation of gravitational force or magnetic force. They work in both dry and wet environments, and adapt to the surrounding environment through reversible shape shifting. These ADs can achieve controllable motions at a maximum velocity of 226 cm min−1 on a dry surface and 32 cm min−1 in a liquid environment. The conceptual system may eventually lead to individually addressable ADs that offer sophisticated functions for high‐throughput molecule analysis, drug assessment, chemical synthesis, and information collection.
Simultaneous neuron stimulation and biophysiological sensing in multi‐encephalic regions can lead to profound understanding of neural pathways, neurotransmitter transportation, and nutrient metabolism. Here, a flexible electronic device with tentacle‐like channels radiating from a central wireless circuit is presented. The device is constructed by different organic and inorganic materials that have been made into thin‐film or nanoparticle formats. All channels have been equipped with flexible components for distributed and synchronized opto‐electrical stimulation, biopotential sensing, and ion concentration monitoring. They can be implanted into different brain regions through adaptive bending and individually addressed to follow programmable working sequences. Experimental results conducted in vitro and in vivo have demonstrated the capability in generating optical or electrical stimulation, while sensing 16‐channels biopotential and concentration of Ca2+, Na+, and K+ ions in distributed regions. Behavior and immunohistochemistry studies suggest potential applications in regulating brain functions for freely moving animals. In combination with various functional materials, the device can serve as a comprehensive research platform that can be modularized to accommodate different needs for brain studies, offering numerous possibilities and combinations to yield sophisticated neuromodulation and behavior regulation.
Previous studies have indicated that bone morphogenetic protein 9 (BMP9) can promote the osteogenic differentiation of mesenchymal stem cells (MSCs) and increase bone formation in bone diseases. However, the mechanisms involved remained poorly understood. It is necessary to investigate the specific regulatory mechanisms of osteogenic differentiation that were induced by BMP9. During the process of osteogenic differentiation induced by BMP9, the expression of microRNA-155 (miR-155) exhibited a tendency of increasing at first and then decreasing, which made us consider that miR-155 may have a modulatory role in this process, but the roles of this process have not been elucidated. This study aimed to uncover miR-155 capable of concomitant regulation of this process. mmu-miR-155 mimic (miR-155) was transfected into MSCs and osteogenesis was induction by using recombinant adenovirus expressing BMP9. Overexpressed miR-155 in MSCs led to a decrease in alkaline phosphatase (ALP) staining and Alizarin red S staining during osteogenic differentiation, and reduced the expression of osteogenesis-related genes, such as runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OCN) and osteopontin (OPN). On protein levels, overexpressed miR-155 markedly decreased the expression of phosphorylated Smad1/5/8 (p-Smad1/5/8), Runx2, OCN and OPN. Luciferase reporter assay revealed Runx2 and bone morphogenetic protein receptor 9 (BMPR2) are two direct target genes of miR-155. Downregulation of the expression of Runx2 and BMPR2, respectively could offset the inhibitory effect of miR-155 in the osteogenesis of MSCs. In vivo, subcutaneous ectopic osteogenesis of MSCs in nude mice showed miR-155 inhibited osteogenic differentiation. In conclusion, our results demonstrated that miR-155 can inhibit the osteogenic differentiation induced by BMP9 in MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.