This paper investigates mobile relaying in wireless powered communication networks (WPCN), where an unmanned aerial vehicle (UAV) is employed to help information delivery from multiple sources to destination with communication channels severely blocked. The sources are low-power without energy supply. To support information transmission, the UAV acts as a hybrid access point (AP) to provide wireless power transfer (WPT) and information reception for sources. We set the issue of system throughput maximization as the optimization problem. On the one hand, the system is subject to the information causality constraint due to the dependent processes of information reception and transmission for the UAV. On the other hand, the sources are constrained by a so-called neutrality constraints due to the dependent processes of energy harvesting and energy consumption. In addition, we take account of the access delay issue of all ground nodes. Specifically, two paradigms of delay-tolerant case and delay-sensitive case are presented. However, the formulated problem including optimizations for time slot scheduling, power allocation and UAV trajectory is non-convex and thus is difficult to obtain its optimal solution. To tackle this problem, we apply the successive convex approximation (SCA) technique and propose an iterative algorithm by which a suboptimal solution can be achieved. Simulation results validate our proposed design, and show that the obtained suboptimal solution is high-quality, as compared to benchmark scheme.
Abstract:In this paper, we consider the precoding design and power allocation problem for multi-user multiple-input multiple-output (MU-MIMO) wireless ad hoc networks. In the first timeslot, the source node (SN) transmits energy and information to a relay node (RN) simultaneously within the simultaneous wireless information and power transfer (SWIPT) framework. Then, in the second timeslot, based on the decoder and the forwarding (DF) protocol, after reassembling the received signal and its own signal, the RN forwards the information to the main user (U1) and simultaneously sends its own information to the secondary user (U2). In this paper, when the transmission rate of the U1 is restricted, the precoding, beamforming, and power splitting (PS) transmission ratio are jointly considered to maximize the transmission rate of U2. To maximize the system rate, we design an optimal beamforming matrix and solve the optimization problem by semi-definite relaxation (SDR), considering the high complexity of implementing the optimal solution. Two sub-optimal precoding programs are also discussed: singular value decomposition and block diagonalization. Finally, the performance of the optimization and sub-optimization schemes are compared using a simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.