Earthworms are keystone detritivores that can influence primary producers by changing seedbed conditions, soil characteristics, flow of water, nutrients and carbon, and plant-herbivore interactions. The invasion of European earthworms into previously earthworm-free temperate and boreal forests of North America dominated by Acer, Quercus, Betula, Pinus and Populus has provided ample opportunity to observe how earthworms engineer ecosystems. Impacts vary with soil parent material, land use history, and assemblage of invading earthworm species. Earthworms reduce the thickness of organic layers, increase the bulk density of soils and incorporate litter and humus materials into deeper horizons of the soil profile, thereby affecting the whole soil food web and the above ground plant community. Mixing of organic and mineral materials turns mor into mull humus which significantly changes the distribution and community composition of the soil microflora and seedbed conditions for vascular plants. In some forests earthworm invasion leads to reduced availability and increased leaching of N and P in soil horizons where most fine roots are concentrated. Earthworms can contribute to a forest decline syndrome, and forest herbs in the genera Aralia, Botrychium, Osmorhiza, Trillium, Uvularia, and Viola are reduced in abundance during earthworm invasion. The degree of plant recovery after invasion varies greatly among sites and depends on complex interactions with soil processes and herbivores. These changes are likely to alter competitive relationships among plant species, possibly facilitating invasion of exotic plant species such as Rhamnus cathartica into North American forests, leading to as yet unknown changes in successional trajectory.
The variability in the type of ecosystem degradation and the specificity of restoration goals can challenge restorationists' ability to generalize about approaches that lead to restoration success. The discipline of soil ecology, which emphasizes both soil organisms and ecosystem processes, has generated a body of knowledge that can be generally useful in improving the outcomes of restoration despite this variability. Here, we propose that the usefulness of this soil ecological knowledge (SEK) for restoration is best considered in the context of the severity of the original perturbation, the goals of the project, and the resilience of the ecosystem to disturbance. A straightforward manipulation of single physical, chemical, or biological components of the soil system can be useful in the restoration of a site, especially when the restoration goal is loosely defined in terms of the species and processes that management seeks to achieve. These single-factor manipulations may in fact produce cascading effects on several ecosystem attributes and can result in unintended recovery trajectories. When complex outcomes are desired, intentional and holistic integration of all aspects of the soil knowledge is necessary. We provide a short roster of examples to illustrate that SEK benefits management and restoration of ecosystems and suggest areas for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.