Thermally induced cycloisomerization reactions of 1,6-allenynes gives α-methylene-γ-lactams via intramolecular Alder-ene reactions. The mechanism is supported by computational and deuterium labelling studies. This thermal, non-radical method enables the discovery of a hitherto unknown route that proceeds via a divergent mechanism distinct from the previous [2 + 2] cycloisomerization manifold.
Herein we report the formation of pyrrolines and tetrahydropyridines from the cyclisation reactions of β-amino allenes by both AuI and AgI catalysts in yields ranging from 5 to 70 %. AuI catalysts favour a 5-endo-dig cyclisation before rapid rearrangement to the 5-exo-dig product, while AgI favours a 6-endo-trig cyclisation. We also report the first known Ag2O catalysed cyclisation reaction of an allene which occurred in good yield (61 %).
A nickel-catalyzed tetradehydro-Diels–Alder reaction
of
(E)-3-ene-1,8-diynes for the preparation of isoindolines,
dihydroisobenzofurans, and tetrahydroisoquinolines has been developed.
A series of air-stable nickel catalysts were used in this study, including
the novel nickel(0)–phosphite catalysts, Ni[P(O-3,5-Me-Ph)3]4, Ni[P(O-1-naphthyl)3]4, and Ni[P(O-2-naphthyl)3]4. To help understand
the type of intermediate in the initial cycloisomerization process,
the trapping of nickellacycle intermediates with pinacolborane to
yield vinyl boronates is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.