Modeling is widely used in biomedical research to gain insights into pathophysiology and treatment of neurological disorders but existing models, such as animal models and computational models, are limited in generalizability to humans and are restricted in the scope of possible experiments. Robotics offers a potential complementary modeling platform, with advantages such as embodiment and physical environmental interaction yet with easily monitored and adjustable parameters. In this review, we discuss the different types of models used in biomedical research and summarize the existing neurorobotics models of neurological disorders. We detail the pertinent findings of these robot models which would not have been possible through other modeling platforms. We also highlight the existing limitations in a wider uptake of robot models for neurological disorders and suggest future directions for the field.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state and municipal governments, an inhomogeneous nationwide response resulted in a death toll amongst the highest recorded globally. To evaluate the impact of the nonpharmaceutical governmental interventions applied by different cities—such as the closure of schools and businesses in general—in the evolution and epidemic spread of SARS-CoV-2, we constructed a full-sized agent-based epidemiological model adjusted to the singularities of particular cities. The model incorporates detailed demographic information, mobility networks segregated by economic segments, and restricting bills enacted during the pandemic period. As a case study, we analyzed the early response of the City of Natal—a midsized state capital—to the pandemic. Although our results indicate that the government response could be improved, the restrictive mobility acts saved many lives. The simulations show that a detailed analysis of alternative scenarios can inform policymakers about the most relevant measures for similar pandemic surges and help develop future response protocols.
Virtual environments have been utilised in robotics research as a tool to assess systems before deploying them in the field. The COVID-19 pandemic has brought about additional motivation for the development of virtual benchmarks in order to aid in safe and productive development. In-person robotics competitions have also halted, thus limiting the scope of opportunities for students and researchers. We implemented the structure of a service robotics competition into an extendable and adaptable virtual scoring environment. The competition challenges the state of the art in home service robotics by presenting realistic household tasks for robots to complete. The virtual environment provides a foundation for competition teams to assess their systems when accessing the physical environment is not possible. We believe that utilising virtual environments as a means of assessment will lead to other benefits such as increased access and generalisation.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic hit almost all cities in Brazil in early 2020 and lasted for several months. Despite the effort of local state and municipal governments, an inhomogeneous nationwide response resulted in a death toll amongst the highest recorded globally. To evaluate the impact of the nonpharmaceutical governmental interventions applied by different cities – such as the closure of schools and business in general – in the evolution and epidemic spread of SARS-CoV-2, we constructed a full-sized agent-based epidemiological model adjusted to the singularities of particular cities. The model incorporates detailed demographic information, mobility networks segregated by economic segments, and restricting bills enacted during the pandemic period. As a case study, we analyzed the early response of the City of Natal – a midsized state capital – to the pandemic. Although our results indicate that the governmental response could be improved, the restrictive mobility acts saved many lives. The simulations show that a detailed analysis of alternative scenarios can inform policymakers about the most relevant measures for similar pandemic surges and help developing future response protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.