Invasive weed optimization (IWO) algorithm and quantum-behaved particle swarm optimization (QPSO) algorithm are inclined to fall into local optimum with lower convergence accuracy when separately used to deal with large scale global optimization (LSGO) problems. In order to fully utilize the advantages of these two intelligent algorithms and complement each other, following the idea of portfolio optimization, this paper correspondingly adjusts and improves the quantum models of IWO and QPSO, organically integrates the two algorithms, and proposes the quantum-behaved invasive weed optimization (QIWO) algorithm. This mixed algorithm can achieve the purpose of information exchange and cooperative search through alternate search enables the make algorithm converge to the optimal solution quickly, properly overcoming the defects of falling into local optimum and premature convergence. Test results of 20 LSGO functions show that compared with other algorithms, QIWO has stronger global optimization capability, faster convergence speed and higher convergence accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.