As a folk medicine of the Jingpo minority in Yunnan province, the venom of Vespa magnifica has been commonly used for the treatment of rheumatoid arthritis. Quality standardization of the wasp venom is a necessary step for its pharmaceutical research and development. To control the quality of the wasp venom, a method based on high-performance liquid chromatography (HPLC) was developed for chemical fingerprint analysis. In the chromatographic fingerprinting, chemometrics procedures, including similarity analysis (SA), hierarchical clustering analysis (HCA), and principal component analysis (PCA), were applied to classify 134 batches (S1–S134) of wasp venom from different origins. The HPLC fingerprint method displayed good precision (Relative standard deviation, RSD < 0.27%), stability (in 16 h, RSD < 0.34%), and repeatability (RSD < 1.00%). Simultaneously, four compounds (VMS1, VMS2, VMS3, and VMS4) in the wasp venom were purified and identified. VMS1 was 5-hydroxytryptamine, and the other compounds were three peptides that were sequenced as follows: Gly–Arg–Pro–Hyp–Gly–Phe–Ser–Pro–Phe–Arg–Ile–Asp–NH2 (VMS2), Ile–Asn–Leu–Lys–Ala–Ile–Ala–Ala–Leu–Ala–Lys–Lys–Leu–Leu–NH2 (VMS3), and Phe–Leu–Pro–Ile–Ile–Gly–Lys–Leu–Leu–Ser–Gly–Leu–Leu–NH2 (VMS4). The quantifications for these components were 110.2 mg/g, 26.9 mg/g, 216.3 mg/g, and 58.0 mg/g, respectively. The results of this work indicated that the combination of the chemical fingerprint and quantitative analysis offers a reasonable way to evaluate the quality of wasp venom.
Rheumatoid arthritis (RA) is an autoimmune disease. Wasp venom (WV), which is considered as a traditional folk medicine in Jingpo nationality in Yunnan, China, relieves rheumatoid arthritis. The current study aimed to investigate the effect of wasp venom ameliorating rheumatoid arthritis symptoms in experimental rats. We established a model of type II collagen- (CII-) induced arthritis (CIA) in SD rats and examined the inhibition of inflammation and autoimmune response. The antiarthritic effects of WV were evaluated through the paw swelling, and histopathological score and histopathology changes of the affected paw were assessed. The anti-inflammation effects were assayed by the level of IL-6, TNF-α, IL-1β, and the number of inflammatory cells in peripheral blood. The alteration of the T cell subset ratio in the spleen of rats was detected by flow cytometry, and at the same time, the viscera index and immune serum globulin levels were evaluated. The results suggested that various doses of WV (0.125, 0.25, and 0.5 mg/kg) significantly alleviated paw swelling and arthritis score in CIA rats with the untreated control (P<0.05). WV (0.25 and 0.5 mg/kg) relieved synovial tissue lesions of ankle joints and histopathology scores of synoviocyte hyperplasia and inflammatory cell infiltration with vehicle group (P<0.05). Regarding immunological regulation, 0.5 mg/kg WV lowered the immune serum globulin levels (P<0.05), and we further found that WV (0.5 mg/kg) suppressed the immune response of Th cells, while enhancing the functions of Tc cells and Treg cells in spleen cells markedly (P<0.05). The immunosuppressive action of WV displayed was analogous to its inhibitory effect on IL-1β, TNF-α, IL-8, IL-6, COX-2, and PGE2 levels in rat serum. In conclusion, these findings demonstrated that WV exhibited antiarthritic activity, which might be associated with their inhibitory effects on immunoregulation and anti-inflammatory action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.