Significant effort in optical-fibre research has been put in recent years into realizing mode-division multiplexing (MDM) in conjunction with wavelength-division multiplexing (WDM) to enable further scaling of the communication bandwidth per fibre. In contrast, almost all integrated photonics operate exclusively in the single-mode regime. MDM is rarely considered for integrated photonics because of the difficulty in coupling selectively to high-order modes, which usually results in high inter-modal crosstalk. Here we show the first microring-based demonstration of on-chip WDM-compatible mode-division multiplexing with low modal crosstalk and loss. Our approach can potentially increase the aggregate data rate by many times for on-chip ultrahigh bandwidth communications.
We demonstrate a platform based on etched facet silicon inverse tapers for waveguide-lensed fiber coupling with a loss as low as 0.7 dB/facet. This platform can be fabricated on a wafer scale enabling mass-production of silicon photonic devices with broadband, high-efficiency couplers.
We demonstrate a 120 GHz 3-dB bandwidth on-chip silicon photonic interleaver with a flat passband over a broad spectral range of 70 nm. The structure of the interleaver is based on an asymmetric Mach-Zehnder interferometer (MZI) with 3 ring resonators coupled to the arms of the MZI. The transmission spectra of this device depict a rapid roll-off on the band edges, where the 20-dB bandwidth is measured to be 142 GHz. This device is optimized for operation in the C-band with a channel crosstalk as low as -20 dB. The device also has full reconfiguration capability to compensate for fabrication imperfections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.