ObjectiveEsophagogastroduodenoscopy (EGD) is the pivotal procedure in the diagnosis of upper gastrointestinal lesions. However, there are significant variations in EGD performance among endoscopists, impairing the discovery rate of gastric cancers and precursor lesions. The aim of this study was to construct a real-time quality improving system, WISENSE, to monitor blind spots, time the procedure and automatically generate photodocumentation during EGD and thus raise the quality of everyday endoscopy.DesignWISENSE system was developed using the methods of deep convolutional neural networks and deep reinforcement learning. Patients referred because of health examination, symptoms, surveillance were recruited from Renmin hospital of Wuhan University. Enrolled patients were randomly assigned to groups that underwent EGD with or without the assistance of WISENSE. The primary end point was to ascertain if there was a difference in the rate of blind spots between WISENSE-assisted group and the control group.ResultsWISENSE monitored blind spots with an accuracy of 90.40% in real EGD videos. A total of 324 patients were recruited and randomised. 153 and 150 patients were analysed in the WISENSE and control group, respectively. Blind spot rate was lower in WISENSE group compared with the control (5.86% vs 22.46%, p<0.001), and the mean difference was −15.39% (95% CI −19.23 to −11.54). There was no significant adverse event.ConclusionsWISENSE significantly reduced blind spot rate of EGD procedure and could be used to improve the quality of everyday endoscopy.Trial registration numberChiCTR1800014809; Results.
Abstract-A Markov chain analysis for spectrum access in licensed bands for cognitive radios is presented and forced termination probability, blocking probability and traffic throughput are derived. In addition, a channel reservation scheme for cognitive radio spectrum handoff is proposed. This scheme allows the tradeoff between forced termination and blocking according to QoS requirements. Numerical results show that the proposed scheme can greatly reduce forced termination probability at a slight increase in blocking probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.