Abstract-Location-Based Service (LBS) has become a vital part of our daily life. While enjoying the convenience provided by LBS, users may lose privacy since the untrusted LBS server has all the information about users in LBS and it may track them in various ways or release their personal data to third parties. To address the privacy issue, we propose a DummyLocation Selection (DLS) algorithm to achieve k-anonymity for users in LBS. Different from existing approaches, the DLS algorithm carefully selects dummy locations considering that side information may be exploited by adversaries. We first choose these dummy locations based on the entropy metric, and then propose an enhanced-DLS algorithm, to make sure that the selected dummy locations are spread as far as possible. Evaluation results show that the proposed DLS algorithm can significantly improve the privacy level in terms of entropy. The enhanced-DLS algorithm can enlarge the cloaking region while keeping similar privacy level as the DLS algorithm.
Abstract-A Markov chain analysis for spectrum access in licensed bands for cognitive radios is presented and forced termination probability, blocking probability and traffic throughput are derived. In addition, a channel reservation scheme for cognitive radio spectrum handoff is proposed. This scheme allows the tradeoff between forced termination and blocking according to QoS requirements. Numerical results show that the proposed scheme can greatly reduce forced termination probability at a slight increase in blocking probability.
Abstract-Privacy protection is critical for Location-Based Services (LBSs). In most previous solutions, users query service data from the untrusted LBS server when needed, and discard the data immediately after use. However, the data can be cached and reused to answer future queries. This prevents some queries from being sent to the LBS server and thus improves privacy. Although a few previous works recognize the usefulness of caching for better privacy, they use caching in a pretty straightforward way, and do not show the quantitative relation between caching and privacy. In this paper, we propose a caching-based solution to protect location privacy in LBSs, and rigorously explore how much caching can be used to improve privacy. Specifically, we propose an entropy-based privacy metric which for the first time incorporates the effect of caching on privacy. Then we design two novel caching-aware dummy selection algorithms which enhance location privacy through maximizing both the privacy of the current query and the dummies' contribution to cache. Evaluations show that our algorithms provide much better privacy than previous caching-oblivious and caching-aware solutions.
In the downlink transmission scenario, power allocation and beamforming design at the transmitter are essential when using multiple antenna arrays. This paper considers a multiple input-multiple output broadcast channel to maximize the weighted sum-rate under the total power constraint. The classical weighted minimum mean-square error (WMMSE) algorithm can obtain suboptimal solutions but involves high computational complexity. To reduce this complexity, we propose a fast beamforming design method using unsupervised learning, which trains the deep neural network (DNN) offline and provides real-time service online only with simple neural network operations. The training process is based on an end-to-end method without labeled samples avoiding the complicated process of obtaining labels. Moreover, we use the ''APoZ''-based pruning algorithm to compress the network volume, which further reduces the computational complexity and volume of the DNN, making it more suitable for low computation-capacity devices. Finally, the experimental results demonstrate that the proposed method improves computational speed significantly with performance close to the WMMSE algorithm. INDEX TERMS MIMO, beamforming, deep learning, unsupervised learning, network pruning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.