These years much effort has been devoted to improving the accuracy or relevance of the recommendation system. Diversity, a crucial factor which measures the dissimilarity among the recommended items, received rather little scrutiny. Directly related to user satisfaction, diversification is usually taken into consideration after generating the candidate items. However, this decoupled design of diversification and candidate generation makes the whole system suboptimal. In this paper, we aim at pushing the diversification to the upstream candidate generation stage, with the help of Graph Convolutional Networks (GCN). Although GCN based recommendation algorithms have shown great power in modeling complex collaborative filtering effect to improve the accuracy of recommendation, how diversity changes is ignored in those advanced works. We propose to perform rebalanced neighbor discovering, categoryboosted negative sampling and adversarial learning on top of GCN. We conduct extensive experiments on real-world datasets. Experimental results verify the effectiveness of our proposed method on diversification. Further ablation studies validate that our proposed method significantly alleviates the accuracy-diversity dilemma. CCS CONCEPTS• Information systems → Collaborative filtering.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing-and adversarial-based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at https://github.com/gitgiter/Graph-Adversarial-Learning.
Motivation The rapid development of single-cell RNA sequencing (scRNA-seq) technologies allows us to explore tissue heterogeneity at the cellular level. The identification of cell types plays an essential role in the analysis of scRNA-seq data, which, in turn, influences the discovery of regulatory genes that induce heterogeneity. As the scale of sequencing data increases, the classical method of combining clustering and differential expression analysis to annotate cells becomes more costly in terms of both labor and resources. Existing scRNA-seq supervised classification method can alleviate this issue through learning a classifier trained on the labeled reference data and then making a prediction based on the unlabeled target data. However, such label transference strategy carries with risks, such as susceptibility to batch effect and further compromise of inherent discrimination of target data. Results In this paper, inspired by unsupervised domain adaptation, we propose a flexible single cell semi-supervised clustering and annotation framework, scSemiCluster, which integrates the reference data and target data for training. We utilize structure similarity regularization on the reference domain to restrict the clustering solutions of the target domain. We also incorporates pairwise constraints in the feature learning process such that cells belonging to the same cluster are close to each other, and cells belonging to different clusters are far from each other in the latent space. Notably, without explicit domain alignment and batch effect correction, scSemiCluster outperforms other state-of-the-art, single-cell supervised classification and semi-supervised clustering annotation algorithms in both simulation and real data. To the best of our knowledge, we are the first to use both deep discriminative clustering and deep generative clustering techniques in the single-cell field. Availability An implementation of scSemiCluster is available from https://github.com/xuebaliang/scSemiCluster. Supplementary information Supplementary notes are available at Bioinformatics online.
Fast skyline selection of high-quality web services is of critically importance to upgrade e-commerce and various cloud applications. In this paper, we present a new MapReduce Skyline method for scalable parallel skyline query processing. Our new angular partitioning of the data space reduces the processing time in selecting optimal skyline services. Our method shortens the Reduce time significantly due to the elimination of more redundant dominance computations. Through Hadoop experiments on large server clusters, our method scales well with the increase of both attribute dimensionality and dataspace cardinality.We define a new performance metric to assess the local optimality of selected skyline services. By experimenting over 10,000 real-life web service applications over 10 performance attribute dimensions, we find that the angular-partitioned MapReduce method is 1.7 and 2.3 times faster than the dimensional and grid partitioning methods, respectively with a higher probability to reach the local optimality. These results are very encouraging to select optimal web services in real-time out of a large number of web services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.