Residual stress is one of the key factors that directly determines the optical quality of micro-optical devices. With the same residual stress, the larger the aperture is, the worse the optical quality is. Therefore, continuous micromirrors are more affected by residual stress than segmented micromirrors. However, due to the complexity of boundary conditions, the influence of residual stress in segmented micromirror arrays on the device performance has been widely investigated in theory and practical applications, but only a few research results about the influence of residual stress in the continuous micromirror arrays have been reported. In this work, the residual stress both in continuous and segmented micromirror arrays is analyzed and summarized, then an accurate model for continuous micromirrors is developed. Compared with the existing models, it combines two additional factors, layer plate and point supported boundary conditions. Based on the proposed model, the change of critical stress of continuous micromirrors induced by different thicknesses of residual stress compensated membrane is theoretically investigated. Finally, the compensating experiment has been carried out, and the results show that the optical quality of micromirror can be remarkably improved, almost two orders of magnitude, with the introduction of residual stress compensation.
The wide field of view (FOV) of traditional star sensor optical systems restricts the ability to suppress atmospheric background. An optical imaging system for an all-time star sensor based on FOV gated technology is proposed. In this system, a wide FOV telescope is used to observe a large sky area containing multiple stars. A microlens and microshutter array is employed to subdivide the wide FOV and gate a narrow FOV to suppress atmospheric background radiation. Assisted by a common imaging lens, each set of microlens and microshutter elements corresponds to a FOV gated imaging channel. With the rapid switching of gated FOV, multiple stellar images are obtained on a common detection during daytime. As an example, a FOV gated optical imaging system with 0.4° gated FOV and 61 imaging channels is designed. In addition, a simplified prototype is developed, and a preliminary experiment of FOV gated imaging is performed near the ground. The results verify the capability of multiple stellar detections during daytime. The proposed optical imaging system has a strong capability of suppressing atmospheric background radiation and provides sufficient FOV gated imaging channels to enhance the probability of detecting multiple stars. It provides an effective technical way to develop all-time star sensors based on star pattern recognition and enables a completely autonomous attitude determination possible for platforms inside the atmosphere during daytime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.