Realistic computational models of neuronal activity typically involve many variables and parameters, most of which remain unknown or poorly constrained. Moreover, experimental observations of the neuronal system are typically limited to the times of action potentials, or spikes. One important component of developing a computational model is the optimal incorporation of these sparse experimental data. Here we use point process statistical theory to develop a procedure for estimating parameters and hidden variables in neuronal computational models given only the observed spike times. We discuss the implementation of a sequential Monte Carlo method for this procedure and apply it to three simulated examples of neuronal spiking activity. We also address the issues of model identification and misspecification, and show that accurate estimates of model parameters and hidden variables are possible given only spike time data.
A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.