High cobalt oxide concentrations were able to shield the microporous silica network from excessive structural rearrangement during harsh hydrothermal testing.
Calcium looping has been identified to be one potential candidate for CO 2 capture; however, the sorbent used in this process still needs to be improved on both the physical and chemical performance. In this work, we report the manufacture of CaO-based pellets from organometallic calcium precursors and cement by an extrusion method. The reactivity and recyclability of the pellets were tested in a thermogravimetric analyzer and a lab-scale fixed-bed reactor for high-temperature CO 2 capture. After 20 cycles of typical carbonation and calcination, all synthetic pellets demonstrated good CO 2 uptakes, and the best value was 0.38 g of CO 2 /g of sorbent, around 90% higher than that of powdered limestone, which was further confirmed by isothermal tests of 200 cycles. Also, attrition property of these pellets was evaluated with different techniques. It was found that the synthetic pellets using organometallic materials as calcium precursors have the same attrition behavior to the pellets derived from inorganic calcium hydroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.