Metal-containing aromatic systems (metalla-aromatics) are unique and important both experimentally and theoretically. Among metalla-aromatics, six-membered metallabenzenes and metallabenzynes have attracted much attention in recent years. However, reports on their superior homologues are rare. In this work, the first series of aromatic dicupra[10]annulenes were isolated from the reaction of dilithio reagents and copper salts. Single-crystal X-ray structural analysis revealed dicupra[10]annulenes with averaged bond lengths. (7)Li NMR spectra and theoretical calculations revealed considerable aromatic character. XPS data suggested that the oxidation state of Cu atom in dicupra[10]annulenes was more likely to be Cu(I), indicating that the dilithio moieties in dicupra[10]annulenes participated as noninnocent ligands. This work demonstrates a novel approach to construct macrocyclic metalla-aromatics.
Metallacyclopentadienes have attracted much attention as building blocks for synthetic chemistry as well as key intermediates in many metal-mediated or metal-catalyzed reactions. However, metallacyclopentadienes of the alkaline-earth metals have not been reported, to say nothing of their structures, reaction chemistry, and synthetic applications. In this work, the first series of magnesiacyclopentadienes, spiro-dilithio magnesiacyclopentadienes, and dimagnesiabutadiene were synthesized from 1,4-dilithio 1,3-butadienes. Single-crystal X-ray structural analysis of these magnesiacycles revealed unique structural characteristics and bonding modes. Their reaction chemistry and synthetic application were preliminarily studied and efficient access to amino cyclopentadienes was established through their reaction with thioformamides. Experimental and DFT calculations demonstrated that these magnesiacyclopentadienes could be regarded as bis(Grignard) reagents wherein the two Mg-C(sp(2)) bonds have a synergetic effect when reacting with substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.