After activation, CD4+ helper T (T(H)) cells differentiate into distinct effector subsets that are characterized by their unique cytokine expression and immunoregulatory function. During this differentiation, T(H)1 and T(H)2 cells produce interferon-gamma and interleukin (IL)-4, respectively, as autocrine factors necessary for selective lineage commitment. A distinct T(H) subset, termed T(HIL-17), T(H)17 or inflammatory T(H) (T(H)i), has been recently identified as a distinct T(H) lineage mediating tissue inflammation. T(H)17 differentiation is initiated by transforming growth factor-beta and IL-6 (refs 5-7) and reinforced by IL-23 (ref. 8), in which signal transduction and activators of transcription (STAT)3 and retinoic acid receptor-related orphan receptor (ROR)-gamma mediate the lineage specification. T(H)17 cells produce IL-17, IL-17F and IL-22, all of which regulate inflammatory responses by tissue cells but have no importance in T(H)17 differentiation. Here we show that IL-21 is another cytokine highly expressed by mouse T(H)17 cells. IL-21 is induced by IL-6 in activated T cells, a process that is dependent on STAT3 but not ROR-gamma. IL-21 potently induces T(H)17 differentiation and suppresses Foxp3 expression, which requires STAT3 and ROR-gamma, which is encoded by Rorc. IL-21 deficiency impairs the generation of T(H)17 cells and results in protection against experimental autoimmune encephalomyelitis. IL-21 is therefore an autocrine cytokine that is sufficient and necessary for T(H)17 differentiation, and serves as a target for treating inflammatory diseases.
s u m m a r yBackground: Since the first case of a novel coronavirus infection pneumonia was detected in Wuhan, China, a series of confirmed cases of the COVID-19 were found in Beijing. We analyzed the data of 262 confirmed cases to determine the clinical and epidemiological characteristics of COVID-19 in Beijing. Methods: We collected patients who were transferred by Beijing Emergency Medical Service to the designated hospitals. The information on demographic, epidemiological, clinical, laboratory test for the COVID-19 virus, diagnostic classification, cluster case and outcome were obtained. Furthermore we compared the characteristics between severe and common confirmed cases which including mild cases, no-pneumonia cases and asymptomatic cases, and we also compared the features between COVID-19 and 2003 SARS. Findings: By Feb 10, 2020, 262 patients were transferred from the hospitals across Beijing to the designated hospitals for special treatment of the COVID-19 infected by Beijing emergency medical service. Among of 262 patients, 46 (17.6%) were severe cases, 216 (82.4%) were common cases, which including 192 (73.3%) mild cases, 11(4.2%) non-pneumonia cases and 13 (5.0%) asymptomatic cases respectively. The median age of patients was 47.5 years old and 48.5% were male. 192 (73.3%) patients were residents of Beijing, 50 (26.0%) of which had been to Wuhan, 116 (60.4%) had close contact with confirmed cases, 21 (10.9%) had no contact history. The most common symptoms at the onset of illness were fever (82.1%), cough (45.8%), fatigue (26.3%), dyspnea (6.9%) and headache (6.5%). The median incubation period was 6.7 days, the interval time from between illness onset and seeing a doctor was 4.5 days. As of Feb 10, 17.2% patients have discharged and 81.7% patients remain in hospital in our study, the fatality of COVID-19 infection in Beijing was 0.9%. Interpretation: On the basis of this study, we provided the ratio of the COVID-19 infection on the severe cases to the mild, asymptomatic and non-pneumonia cases in Beijing. Population was generally susceptible, and with a relatively low fatality rate. The measures to prevent transmission was very successful at early stage, the next steps on the COVID-19 infection should be focused on early isolation of patients and quarantine for close contacts in families and communities in Beijing.
Cytotoxic lymphocyte–mediated immunity relies on granzymes. Granzymes are thought to kill target cells by inducing apoptosis, although the underlying mechanisms are not fully understood. Here, we report that natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)–positive cells through pyroptosis, a form of proinflammatory cell death executed by the gasdermin family of pore-forming proteins. Killing results from the cleavage of GSDMB by lymphocyte-derived granzyme A (GZMA), which unleashes its pore-forming activity. Interferon-γ (IFN-γ) up-regulates GSDMB expression and promotes pyroptosis. GSDMB is highly expressed in certain tissues, particularly digestive tract epithelia, including derived tumors. Introducing GZMA-cleavable GSDMB into mouse cancer cells promotes tumor clearance in mice. This study establishes gasdermin-mediated pyroptosis as a cytotoxic lymphocyte–killing mechanism, which may enhance antitumor immunity.
SUMMARY Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.