SUMMARY
Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.
provided expertise to develop 18 F nutrient uptake assays. F.X. and M.N.T injected and handled mice for 18 F nutrient uptake assays, and performed and provided expertise for PET imaging and autoradiography. T.H. and W.D.M. performed and provided expertise for intrarenal Renca experiments. R.W.J. and V.T.M generated and provided expertise for PyMT GEMM tumors. R.E.B and C.S.W. generated and provided expertise for AOM/DSS CRC tumors. B.I.R. R.T.O. and M.H.W. generated the pTZeo-EL-thy1.1 transposon construct and engineered MC38 cells using this transposon system. B.I.R, M.Z.M, and A.S. performed in vivo 2NBDG studies. J.E.B. provided expertise in characterizing TAM. A.R.P provided expertise in flow sorting for mRNA transcript analysis. B.I.R. and M.Z.M performed extracellular flux and mRNA transcript experiments. F.M.M. and E.F.M performed and provided expertise in cell staining for light microscopy. E.F.M performed light microscopy and pathologic examination of MC38 tumors. A.A (VU) conducted transcriptomic analysis. B.I.R and M.Z.M. analyzed all data generated in this study. J.C.R. and W.K.R. obtained funding for this study.Data Availability Statement (DAS) All data will be made available upon reasonable request to JCR/WKR. Tumor mRNA transcript data that support the findings of this study have been deposited in Gene Expression Omnibus (GEO) under accession GSE165223. These data are also found in Supplementary Information Table 4.
Code Availability Statement (CAS)The code used to support tumor mRNA transcript analysis has been previously published (see methods references) and will be made available upon request to JCR/WKR.
SUMMARY
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved carboxyl-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction but not dNTPase-inactive SAMHD1 fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity and prevents disease, including cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.