In this paper, a ranging system using dispersive interferometry is developed with a femtosecond pulse laser, aiming to eliminate the measurement dead zones by using a greatly unbalanced Mach–Zehnder interferometer. The distance can be measured by the frequency of the spectral modulation. We indicate that the integer number of the pulse-to-pulse length can be determined by changing the repetition frequency. In the short distance measurement, the results show an agreement within 1.5 μm compared with an incremental He-Ne laser in the 1 m measurement range. We do large-scale experiments on a long optical rail using a typical Michelson interferometer, and an agreement well within 25 μm is obtained in a range up to 75 m, corresponding to a relative precision of 3.3 × 10−7. Additionally, we experimentally optimize the system set-up to minimize the measurement uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.