RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. The key solution is to learn aligned features to the bridge RGB and IR modalities. However, due to the lack of correspondence labels between every pair of RGB and IR images, most methods try to alleviate the variations with set-level alignment by reducing the distance between the entire RGB and IR sets. However, this set-level alignment may lead to misalignment of some instances, which limits the performance for RGB-IR Re-ID. Different from existing methods, in this paper, we propose to generate cross-modality paired-images and perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys several merits. First, our method can perform set-level alignment by disentangling modality-specific and modality-invariant features. Compared with conventional methods, ours can explicitly remove the modality-specific features and the modality variation can be better reduced. Second, given cross-modality unpaired-images of a person, our method can generate cross-modality paired images from exchanged images. With them, we can directly perform instance-level alignment by minimizing distances of every pair of images. Extensive experimental results on two standard benchmarks demonstrate that the proposed model favourably against state-of-the-art methods. Especially, on SYSU-MM01 dataset, our model can achieve a gain of 9.2% and 7.7% in terms of Rank-1 and mAP. Code is available at https://github.com/wangguanan/JSIA-ReID.
A newly emerged coronavirus (COVID-19) seriously threatens human life and health worldwide. In coping and fighting against COVID-19, the most critical step is to effectively screen and diagnose infected patients. Among them, chest X-ray imaging technology is a valuable imaging diagnosis method. The use of computer-aided diagnosis to screen X-ray images of COVID-19 cases can provide experts with auxiliary diagnosis suggestions, which can reduce the burden of experts to a certain extent. In this study, we first used conventional transfer learning methods, using five pre-trained deep learning models, which the Xception model showed a relatively ideal effect, and the diagnostic accuracy reached 96.75%. In order to further improve the diagnostic accuracy, we propose an efficient diagnostic method that uses a combination of deep features and machine learning classification. It implements an end-to-end diagnostic model. The proposed method was tested on two datasets and performed exceptionally well on both of them. We first evaluated the model on 1102 chest X-ray images. The experimental results show that the diagnostic accuracy of Xception + SVM is as high as 99.33%. Compared with the baseline Xception model, the diagnostic accuracy is improved by 2.58%. The sensitivity, specificity and AUC of this model reached 99.27%, 99.38% and 99.32%, respectively. To further illustrate the robustness of our method, we also tested our proposed model on another dataset. Finally also achieved good results. Compared with related research, our proposed method has higher classification accuracy and efficient diagnostic performance. Overall, the proposed method substantially advances the current radiology based methodology, it can be very helpful tool for clinical practitioners and radiologists to aid them in diagnosis and follow-up of COVID-19 cases.
The fetal heart rate (FHR) is monitored on a paper strip (cardiotocogram) during labour to assess fetal health. If necessary, clinicians can intervene and assist with a prompt delivery of the baby. Data-driven computerized FHR analysis could help clinicians in the decision-making process. However, selecting the best computerized FHR features that relate to labour outcome is a pressing research problem. The objective of this study is to apply genetic algorithms (GA) as a feature selection method to select the best feature subset from 64 FHR features and to integrate these best features to recognize unfavourable FHR patterns. The GA was trained on 404 cases and tested on 106 cases (both balanced datasets) using three classifiers, respectively. Regularization methods and backward selection were used to optimize the GA. Reasonable classification performance is shown on the testing set for the best feature subset (Cohen's kappa values of 0.45 to 0.49 using different classifiers). This is, to our knowledge, the first time that a feature selection method for FHR analysis has been developed on a database of this size. This study indicates that different FHR features, when integrated, can show good performance in predicting labour outcome. It also gives the importance of each feature, which will be a valuable reference point for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.