In this paper, we investigate the impact of radio irregularity on the communication performance in wireless sensor networks. Radio irregularity is a common phenomenon which arises from multiple factors, such as variance in RF sending power and different path losses depending on the direction of propagation. From our experiments, we discover that the variance in received signal strength is largely random; however, it exhibits a continuous change with incremental changes in direction. With empirical data obtained from the MICA2 platform, we establish a radio model for simulation, called the Radio Irregularity Model (RIM). This model is the first to bridge the discrepancy between spherical radio models used by simulators and the physical reality of radio signals. With this model, we are able to analyze the impact of radio irregularity on some of the well-known MAC and routing protocols. Our results show that radio irregularity has a significant impact on routing protocols, but a relatively small impact on MAC protocols. Finally, we propose six solutions to deal with radio irregularity. We evaluate two of them in detail. The results obtained from both the simulation and a running testbed demonstrate that our solutions greatly improve communication performance in the presence of radio irregularity.
With the high demand for wireless data traffic, WiFi networks have experienced very rapid growth, because they provide high throughput and are easy to deploy. Recently, Channel State Information (CSI) measured by WiFi networks is widely used for different sensing purposes. To get a better understanding of existing WiFi sensing technologies and future WiFi sensing trends, this survey gives a comprehensive review of the signal processing techniques, algorithms, applications, and performance results of WiFi sensing with CSI. Different WiFi sensing algorithms and signal processing techniques have their own advantages and limitations and are suitable for different WiFi sensing applications. The survey groups CSI-based WiFi sensing applications into three categories, detection, recognition, and estimation, depending on whether the outputs are binary/multi-class classifications or numerical values. With the development and deployment of new WiFi technologies, there will be more WiFi sensing opportunities wherein the targets may go beyond from humans to environments, animals, and objects. The survey highlights three challenges for WiFi sensing: robustness and generalization, privacy and security, and coexistence of WiFi sensing and networking. Finally, the survey presents three future WiFi sensing trends, i.e., integrating cross-layer network information, multi-device cooperation, and fusion of different sensors, for enhancing existing WiFi sensing capabilities and enabling new WiFi sensing opportunities.
This paper describes one of the major efforts in the sensor network community to build an integrated sensor network system for surveillance missions. The focus of this effort is to acquire and verify information about enemy capabilities and positions of hostile targets. Such missions often involve a high element of risk for human personnel and require a high degree of stealthiness. Hence, the ability to deploy unmanned surveillance missions, by using wireless sensor networks, is of great practical importance for the military. Because of the energy constraints of sensor devices, such systems necessitate an energy-aware design to ensure the longevity of surveillance missions. Solutions proposed recently for this type of system show promising results through simulations. However, the simplified assumptions they make about the system in the simulator often do not hold well in practice and energy consumption is narrowly accounted for within a single protocol. In this paper, we describe the design and implementation of a complete running system, called VigilNet, for energy-efficient surveillance. The VigilNet allows a group of cooperating sensor devices to detect and track the positions of moving vehicles in an energy-efficient and stealthy manner. We evaluate VigilNet middleware components and integrated system extensively on a network of 70 MICA2 motes. Our results show that our surveillance strategy is adaptable and achieves a significant extension of network lifetime. Finally, we share lessons learned in building such an integrated sensor system.
Falls are dangerous for the aged population as they can adversely affect health. Therefore, many fall detection systems have been developed. However, prevalent methods only use accelerometers to isolate falls from activities of daily living (ADL). This makes it difficult to distinguish real falls from certain fall-like activities such as sitting down quickly and jumping, resulting in many false positives. Body orientation is also used as a means of detecting falls, but it is not very useful when the ending position is not horizontal, e.g. falls happen on stairs.In this paper we present a novel fall detection system using both accelerometers and gyroscopes. We divide human activities into two categories: static postures and dynamic transitions. By using two tri-axial accelerometers at separate body locations, our system can recognize four kinds of static postures: standing, bending, sitting, and lying. Motions between these static postures are considered as dynamic transitions. Linear acceleration and angular velocity are measured to determine whether motion transitions are intentional. If the transition before a lying posture is not intentional, a fall event is detected. Our algorithm, coupled with accelerometers and gyroscopes, reduces both false positives and false negatives, while improving fall detection accuracy. In addition, our solution features low computational cost and real-time response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.