Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.
The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19–linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.
Highlights d Variations in gut RORg+ Tregs are maternally transmitted through multiple generations d RORg+ Treg setpoint is determined in early life, not driven by genetics or microbiota d Gut RORg+ Tregs and IgA form a double-negative regulatory loop d IgA+ plasma cells expand and migrate in late gestation via the entero-mammary axis
CD4 + effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff actually adopt in frontline tissues in vivo , we applied single-cell transcriptome and chromatin analysis on colonic Teff cells, in germ-free or conventional mice, or after challenge with a range of phenotypically biasing microbes. Subsets were marked by expression of interferon-signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic T H subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as T H markers distributed in a polarized continuum, which was also functionally validated. Clones derived from single progenitors gave rise to both IFN-γ and IL17-producing cells. Most transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activity of AP1 and IRF transcription factor families, not the canonical subset master regulators T-bet, GATA3, RORγ.
The tumor microenvironment is highly correlated with tumor occurrence, progress, and prognosis. We aimed to investigate the immune-related gene (IRG) expression and immune infiltration pattern in the tumor microenvironment of lower-grade glioma (LGG). We employed the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm to calculate immune and stromal scores and identify prognostic IRG based on The Cancer Genome Atlas data set. The potential molecular functions of these genes were explored with the help of functional enrichment analysis and the protein-protein interaction network. Remarkably, three cohorts that were downloaded from the Chinese Glioma Genome Atlas database were analyzed to further verify the prognostic values of these genes. Moreover, the Tumor IMmune Estimation Resource (TIMER) algorithm was used to estimate the abundance of infiltrating immune cells and explore the immune infiltration pattern in LGG. And unsupervised cluster analysis determined three clusters of the immune infiltration pattern and indicated that CD8 + T cells and macrophages were significantly associated with LGG outcomes. Altogether, our study identified a list of prognostic IRGs and provided a perspective to explore the immune infiltration pattern in LGG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.