The tumor suppressor p53, one of the most intensely investigated proteins, is usually studied by experiments that are averaged over cell populations, potentially masking the dynamic behavior in individual cells. We present a system for following, in individual living cells, the dynamics of p53 and its negative regulator Mdm2 (refs. 1,4-7): this system uses functional p53-CFP and Mdm2-YFP fusion proteins and time-lapse fluorescence microscopy. We found that p53 was expressed in a series of discrete pulses after DNA damage. Genetically identical cells had different numbers of pulses: zero, one, two or more. The mean height and duration of each pulse were fixed and did not depend on the amount of DNA damage. The mean number of pulses, however, increased with DNA damage. This approach can be used to study other signaling systems and suggests that the p53-Mdm2 feedback loop generates a 'digital' clock that releases well-timed quanta of p53 until damage is repaired or the cell dies.
T regulatory cells that express the transcription factor Foxp3 (Foxp3+ Treg) promote tissue homeostasis in several settings. We now report that symbiotic members of the human gut microbiota induce a distinct Treg population in the mouse colon, which constrains immuno-inflammatory responses. This induction, which we find to map to a broad, but specific, array of individual bacterial species, requires the transcription factor Rorγ, paradoxically in that Rorγ is thought to antagonize FoxP3 and promote T helper 17 (Th17) cell differentiation. Rorγ's transcriptional footprint differs in colonic Tregs and Th17 cells, controlling important effector molecules. Rorγ, and the Tregs that express it, contribute substantially to regulating colonic Th1/Th17 inflammation. Thus, the marked context-specificity of Rorγ results in very different outcomes even in closely related cell-types.
Understanding the dynamics and variability of protein circuitry requires accurate measurements in living cells as well as theoretical models. To address this, we employed one of the best-studied protein circuits in human cells, the negative feedback loop between the tumor suppressor p53 and the oncogene Mdm2. We measured the dynamics of fluorescently tagged p53 and Mdm2 over several days in individual living cells. We found that isogenic cells in the same environment behaved in highly variable ways following DNA-damaging gamma irradiation: some cells showed undamped oscillations for at least 3 days (more than 10 peaks). The amplitude of the oscillations was much more variable than the period. Sister cells continued to oscillate in a correlated way after cell division, but lost correlation after about 11 h on average. Other cells showed low-frequency fluctuations that did not resemble oscillations. We also analyzed different families of mathematical models of the system, including a novel checkpoint mechanism. The models point to the possible source of the variability in the oscillations: low-frequency noise in protein production rates, rather than noise in other parameters such as degradation rates. This study provides a view of the extensive variability of the behavior of a protein circuit in living human cells, both from cell to cell and in the same cell over time.
Protein expression is a stochastic process that leads to phenotypic variation among cells. The cell-cell distribution of protein levels in microorganisms has been well characterized but little is known about such variability in human cells. Here, we studied the variability of protein levels in human cells, as well as the temporal dynamics of this variability, and addressed whether cells with higher than average protein levels eventually have lower than average levels, and if so, over what timescale does this mixing occur. We measured fluctuations over time in the levels of 20 endogenous proteins in living human cells, tagged by the gene for yellow fluorescent protein at their chromosomal loci. We found variability with a standard deviation that ranged, for different proteins, from about 15% to 30% of the mean. Mixing between high and low levels occurred for all proteins, but the mixing time was longer than two cell generations (more than 40 h) for many proteins. We also tagged pairs of proteins with two colours, and found that the levels of proteins in the same biological pathway were far more correlated than those of proteins in different pathways. The persistent memory for protein levels that we found might underlie individuality in cell behaviour and could set a timescale needed for signals to affect fully every member of a cell population.
Why do seemingly identical cells respond differently to a drug? To address this, we studied the dynamics and variability of the protein response of human cancer cells to a chemotherapy drug, camptothecin. We present a dynamic-proteomics approach that measures the levels and locations of nearly 1000 different endogenously tagged proteins in individual living cells at high temporal resolution. All cells show rapid translocation of proteins specific to the drug mechanism, including the drug target (topoisomerase-1), and slower, wide-ranging temporal waves of protein degradation and accumulation. However, the cells differ in the behavior of a subset of proteins. We identify proteins whose dynamics differ widely between cells, in a way that corresponds to the outcomes-cell death or survival. This opens the way to understanding molecular responses to drugs in individual cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.