In this paper, a general Maximum K-Min approach for classification is proposed. With the physical meaning of optimizing the classification confidence of the K worst instances, Maximum K-Min Gain/Minimum K-Max Loss (MKM) criterion is introduced. To make the original optimization problem with combinational constraints computationally tractable, the optimization techniques are adopted and a general compact representation lemma for MKM Criterion is summarized. Based on the lemma, a Nonlinear Maximum K-Min (NMKM) classifier and a Semi-supervised Maximum K-Min (SMKM) classifier are presented for traditional classification task and semi-supervised classification task respectively. Based on the experiment results of publicly available datasets, our Maximum K-Min methods have achieved competitive performance when comparing against Hinge Loss classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.