With increasing appealing to privacy issues in face recognition, federated learning has emerged as one of the most prevalent approaches to study the unconstrained face recognition problem with private decentralized data. However, conventional decentralized federated algorithm sharing whole parameters of networks among clients suffers from privacy leakage in face recognition scene. In this work, we introduce a framework, FedGC, to tackle federated learning for face recognition and guarantees higher privacy. We explore a novel idea of correcting gradients from the perspective of backward propagation and propose a softmax-based regularizer to correct gradients of class embeddings by precisely injecting a cross-client gradient term. Theoretically, we show that FedGC constitutes a valid loss function similar to standard softmax. Extensive experiments have been conducted to validate the superiority of FedGC which can match the performance of conventional centralized methods utilizing full training dataset on several popular benchmark datasets.
In this paper, a general Maximum K-Min approach for classification is proposed. With the physical meaning of optimizing the classification confidence of the K worst instances, Maximum K-Min Gain/Minimum K-Max Loss (MKM) criterion is introduced. To make the original optimization problem with combinational constraints computationally tractable, the optimization techniques are adopted and a general compact representation lemma for MKM Criterion is summarized. Based on the lemma, a Nonlinear Maximum K-Min (NMKM) classifier and a Semi-supervised Maximum K-Min (SMKM) classifier are presented for traditional classification task and semi-supervised classification task respectively. Based on the experiment results of publicly available datasets, our Maximum K-Min methods have achieved competitive performance when comparing against Hinge Loss classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.