The Ordos Basin is a large-scale sedimentary basin in northwestern China. The hydrostratigraphic units from bottom to top are pre-Cambrian metamorphic rocks, Lower Paleozoic carbonate rocks, Upper Paleozoic to Mesozoic clastic rocks and Cenozoic deposits. The total thickness is up to 6000 m. Three groundwater systems are present in the Ordos Basin, based on the geological settings, i.e. the karst groundwater system, the Cretaceous clastic groundwater system and the Quaternary groundwater system. This paper describes systematically the groundwater flow patterns of each system and overall assessment of groundwater resources.
Karst groundwater in the Niangziguan spring fields is the main source to supply domestic and industrial water demands in Yangquan City, China. However, the safety of water supply in this region has recently suffered from deteriorating quality levels. Therefore, identifying pollution sources and causes is crucial for maintaining a reliable water supply. In this study, a systematic sample collection for the karst groundwater in the Niangziguan spring fields was implemented to identify hydrochemical characteristics of the karst groundwater through comprehensive analyses of hydrochemistry (piper diagram, and ion ratios,) and stable isotopes (S and H-O). The results show that the karst groundwater in the Niangziguan spring fields was categorized as SO4·HCO3-Ca·Mg, HCO3·SO4-Ca·Mg, and SO4-Ca types. K+, Cl-, and Na+ are mainly sourced from urban sewage and coal mine drainage. In addition, SO42− was mainly supplied by the dissolution of gypsum and the oxidation of FeS2 in coal-bearing strata. It is noteworthy that, based on H-O and S isotopes, 75% of the karst groundwater was contaminated by acidic water in coal mines at different degrees. In the groundwater of the Niangziguan spring field, the proportions of SO42− derived from FeS2 oxidation were 60.6% (N50, Chengxi spring), 30.3% (N51, Wulong spring), and 26.0% (N52, Four springs mixed with water). Acid mine drainage directly recharges and pollutes karst groundwater through faults or abandoned boreholes, or discharges to rivers, and indirectly pollutes karst groundwater through river infiltration in carbonate exposed areas. The main source of rapid increase of sulfate in karst groundwater is acid water from abandoned coal mines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.