Background Computer-aided diagnosis (CAD) is used as an aid tool by radiologists on breast lesion diagnosis in ultrasonography. Previous studies demonstrated that CAD can improve the diagnosis performance of radiologists. However, the optimal use of CAD on breast lesions according to size (below or above 2 cm) has not been assessed. Objective The aim of this study was to compare the performance of different radiologists using CAD to detect breast tumors less and more than 2 cm in size. Methods We prospectively enrolled 261 consecutive patients (mean age 43 years; age range 17-70 years), including 398 lesions (148 lesions>2 cm, 79 malignant and 69 benign; 250 lesions≤2 cm, 71 malignant and 179 benign) with breast mass as the prominent symptom. One novice radiologist with 1 year of ultrasonography experience and one experienced radiologist with 5 years of ultrasonography experience were each assigned to read the ultrasonography images without CAD, and then again at a second reading while applying the CAD S-Detect. We then compared the diagnostic performance of the readers in the two readings (without and combined with CAD) with breast imaging. The McNemar test for paired data was used for statistical analysis. Results For the novice reader, the area under the receiver operating characteristic curve (AUC) improved from 0.74 (95% CI 0.67-0.82) from the without-CAD mode to 0.88 (95% CI 0.83-0.93; P<.001) at the combined-CAD mode in lesions≤2 cm. For the experienced reader, the AUC improved from 0.84 (95% CI 0.77-0.90) to 0.90 (95% CI 0.86-0.94; P=.002). In lesions>2 cm, the AUC moderately decreased from 0.81 to 0.80 (novice reader) and from 0.90 to 0.82 (experienced reader). The sensitivity of the novice and experienced reader in lesions≤2 cm improved from 61.97% and 73.23% at the without-CAD mode to 90.14% and 97.18% (both P<.001) at the combined-CAD mode, respectively. Conclusions S-Detect is a feasible diagnostic tool that can improve the sensitivity for both novice and experienced readers, while also improving the negative predictive value and AUC for lesions≤2 cm, demonstrating important application value in the clinical diagnosis of breast cancer. Trial Registration Chinese Clinical Trial Registry ChiCTR1800019649; http://www.chictr.org.cn/showprojen.aspx?proj=33094
Background Computer-aided diagnosis (CAD) is a tool that can help radiologists diagnose breast lesions by ultrasonography. Previous studies have demonstrated that CAD can help reduce the incidence of missed diagnoses by radiologists. However, the optimal method to apply CAD to breast lesions using diagnostic planes has not been assessed. Objective The aim of this study was to compare the performance of radiologists with different levels of experience when using CAD with the quadri-planes method to detect breast tumors. Methods From November 2018 to October 2019, we enrolled patients in the study who had a breast mass as their most prominent symptom. We assigned 2 ultrasound radiologists (with 1 and 5 years of experience, respectively) to read breast ultrasonography images without CAD and then to perform a second reading while applying CAD with the quadri-planes method. We then compared the diagnostic performance of the readers for the 2 readings (without and with CAD). The McNemar test for paired data was used for statistical analysis. Results A total of 331 patients were included in this study (mean age 43.88 years, range 17-70, SD 12.10), including 512 lesions (mean diameter 1.85 centimeters, SD 1.19; range 0.26-9.5); 200/512 (39.1%) were malignant, and 312/512 (60.9%) were benign. For CAD, the area under the receiver operating characteristic curve (AUC) improved significantly from 0.76 (95% CI 0.71-0.79) with the cross-planes method to 0.84 (95% CI 0.80-0.88; P<.001) with the quadri-planes method. For the novice reader, the AUC significantly improved from 0.73 (95% CI 0.69-0.78) for the without-CAD mode to 0.83 (95% CI 0.80-0.87; P<.001) for the combined-CAD mode with the quadri-planes method. For the experienced reader, the AUC improved from 0.85 (95% CI 0.81-0.88) to 0.87 (95% CI 0.84-0.91; P=.15). The kappa indicating consistency between the experienced reader and the novice reader for the combined-CAD mode was 0.63. For the novice reader, the sensitivity significantly improved from 60.0% for the without-CAD mode to 79.0% for the combined-CAD mode (P=.004). The specificity, negative predictive value, positive predictive value, and accuracy improved from 84.9% to 87.8% (P=.53), 76.8% to 86.7% (P=.07), 71.9% to 80.6% (P=.13), and 75.2% to 84.4% (P=.12), respectively. For the experienced reader, the sensitivity improved significantly from 76.0% for the without-CAD mode to 87.0% for the combined-CAD mode (P=.045). The NPV and accuracy moderately improved from 85.8% and 86.3% to 91.0% (P=.27) and 87.0% (P=.84), respectively. The specificity and positive predictive value decreased from 87.4% to 81.3% (P=.25) and from 87.2% to 93.0% (P=.16), respectively. Conclusions S-Detect is a feasible diagnostic tool that can improve the sensitivity, accuracy, and AUC of the quadri-planes method for both novice and experienced readers while also improving the specificity for the novice reader. It demonstrates important application value in the clinical diagnosis of breast cancer. Trial Registration ChiCTR.org.cn 1800019649; http://www.chictr.org.cn/showproj.aspx?proj=33094
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.