Background A novel coronavirus (SARS-CoV2) outbreak in more than 200 countries recently caused viral pneumonia that was extremely infectious and pathogenic. The Chinese government proposes that both Traditional Chinese medicine (TCM) and Western medicine can be used in combination to treat pneumonia caused by SARS-CoV2, and TCM effectively provides continuous prevention and treatment. Methods The present review analyzes and summarizes the prevention and treatment of the novel coronavirus disease (COVID-19) with TCM. A classified analysis of the efficacy and advantages of TCM for the prevention and treatment of COVID-19 was performed, and the mechanisms of TCM in treating COVID-19 are summarized. Results TCM is effective in preventing COVID-19, and medical staff can prevent an iatrogenic infection by taking a decoction made based on the principles of TCM. As of March 13, 2020, new cases of COVID-19 in China have decreased in number to single digits. TCM's curative effect was outstanding, with a national participation rate of over 90%. More than 70,000 people were cured of COVID-19 and discharged from the hospital. Only approximately 10,000 patients are currently being treated, and the total treatment time is approximately 2 months. Conclusions TCM is currently the best choice for the treatment and prevention of COVID-19, and it is expected that it will be promoted by countries around the world.
Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that is sensitive to cell swelling, arachidonic acid and its metabolites, epoxyeicosatrienoic acids, which are associated with cerebral ischemia. The activation of TRPV4 induces cytotoxicity in many types of cells, accompanied by an increase in the intracellular free calcium concentration. TRPV4 activation modulates the mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)/ protein kinase B (Akt) signaling pathways that regulate cell death and survival. Herein, we examined TRPV4-induced neuronal apoptosis by intracerebroventricular (ICV) injection of a TRPV4 agonist (GSK1016790A) and assessed its involvement in cerebral ischemic injury. ICV injection of GSK1016790A dose-dependently induced apoptosis in the mouse hippocampi (GSK-injected mice). The protein level of phosphorylated p38 MAPK (p-p38 MAPK) was markedly increased and that of phosphorylated c-Jun N-terminal protein kinase (p-JNK) was virtually unchanged. TRPV4 activation also decreased Bcl-2/Bax protein ratio and increased the cleaved caspase-3 protein level, and these effects were blocked by a PI3K agonist and a p38 MAPK antagonist, but were unaffected by a JNK antagonist. ICV injection of the TRPV4 antagonist HC-067047 reduced brain infarction after reperfusion for 48 h in mice with middle cerebral artery occlusion (MCAO). In addition, HC-067047 treatment attenuated the decrease in the phosphorylated Akt protein level and the increase in p-p38 MAPK protein level at 48 h after MCAO, while the increase in p-JNK protein level remained unchanged. Finally, the decreased Bcl-2/Bax protein ratio and the increased cleaved caspase-3 protein level at 48 h after MCAO were markedly attenuated by HC-067047. We conclude that activation of TRPV4 induces apoptosis by downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways, which is involved in cerebral ischemic injury.
Erianin is a natural compound found in Dendrobium chrysotoxum Lindl. Diabetic retinopathy (DR) is a serious and common microvascular complication of diabetes. This study aims to investigate the inhibitory mechanism of erianin on retinal neoangiogenesis and its contribution to the amelioration of DR. Erianin blocked high glucose (HG)-induced tube formation and migration in choroid-retinal endothelial RF/6A cells. Erianin inhibited HG-induced vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor 1-alpha (HIF-1α) translocation into nucleus and ERK1/2 activation in RF/6A and microglia BV-2 cells. MEK1/2 inhibitor U0126 blocked HG-induced HIF-1α and ERK1/2 activation in both above two cells. In addition, erianin abrogated VEGF-induced angiogenesis in vitro and in vivo, and also inhibited VEGF-induced activation of VEGF receptor 2 (VEGFR2) and its downstream cRaf-MEK1/2-ERK1/2 and PI3K-AKT signaling pathways in RF/6A cells. Furthermore, erianin reduced the increased retinal vessels, VEGF expression and microglia activation in streptozotocin (STZ)-induced hyperglycemic and oxygen-induced retinopathy (OIR) mice. In conclusion, our results demonstrate that erianin inhibits retinal neoangiogenesis by abrogating HG-induced VEGF expression by blocking ERK1/2-mediated HIF-1α activation in retinal endothelial and microglial cells, and further suppressing VEGF-induced activation of VEGFR2 and its downstream signals in retinal endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.