Daily music experience involves synchronizing movements in time with a perceived periodic beat. It has been established for over a century that beat synchronization is less stable for the visual than for the auditory modality. This auditory advantage of beat synchronization gives rise to the hypotheses that the neural and evolutionary mechanisms underlying beat synchronization are modality-specific. Here, however, we found that synchronization to a periodically bouncing ball with a realistic motion trajectory was not less stable than synchronization to an auditory metronome. This finding challenges the auditory advantage of beat synchronization, and has important implications for the understanding of the biological substrates of beat synchronization.
The brain effortlessly recognizes objects even when the visual information belonging to an object is widely separated, as well demonstrated by the Kanizsa-type illusory contours (ICs), in which a contour is perceived despite the fragments of the contour being separated by gaps. Such large-range visual completion has long been thought to be preattentive, whereas its dependence on top-down influences remains unclear. Here, we report separate modulations by spatial attention and task relevance on the neural activities in response to the ICs. IC-sensitive event-related potentials that were localized to the lateral occipital cortex were modulated by spatial attention at an early processing stage (130–166 ms after stimulus onset) and modulated by task relevance at a later processing stage (234–290 ms). These results not only demonstrate top-down attentional influences on the neural processing of ICs but also elucidate the characteristics of the attentional modulations that occur in different phases of IC processing.
This paper describes a pilot study on child multidimensional poverty in rural China by introducing the Alkire-Foster method based on survey data collected from five provinces/autonomous regions. Results showed that the headcount ratio of child multidimensional poverty was 14.29%. On average, multidimensionally poor children were deprived in 37.62% of all the dimensions, and their adjusted headcount ratio (multidimensional poverty) index was 0.054. Health was the most deprived dimension, followed by the subsistence and participation dimensions. Disabled children, children influenced by HIV/AIDS, and ethnic minority children were severely deprived. This study not only adds to the current literature on child poverty in China, but also provides policy suggestions for future action plans.
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.