Daily music experience involves synchronizing movements in time with a perceived periodic beat. It has been established for over a century that beat synchronization is less stable for the visual than for the auditory modality. This auditory advantage of beat synchronization gives rise to the hypotheses that the neural and evolutionary mechanisms underlying beat synchronization are modality-specific. Here, however, we found that synchronization to a periodically bouncing ball with a realistic motion trajectory was not less stable than synchronization to an auditory metronome. This finding challenges the auditory advantage of beat synchronization, and has important implications for the understanding of the biological substrates of beat synchronization.
Currently there is no widespread agreement on an explanation for the stability of surface nanobubbles. One means by which several explanations can be differentiated is through the predictions they make about the degree of permeability of the gas-solution interface. Here we test the hypothesis that the gas-solution interface of surface nanobubbles is permeable by experimental measurements of the exchange of carbon dioxide. We present measurements by attenuated total reflection Fourier transform infrared (ATR-FTIR) and atomic force microscopy (AFM), demonstrating that the gas inside surface nanobubbles is not sealed inside the bubbles, but rather exchanges with the dissolved gas in the liquid phase. Such gas transfer is measurable by using the infrared active gas CO2. We find that bubbles formed in air-saturated water that is then perfused with CO2-saturated water give rise to distinctive gaseous CO2 signals in ATR-FTIR measurements. Also the CO2 gas inside nanobubbles quickly dissolves into the surrounding air-saturated water. AFM images before and after fluid exchange show that CO2 bubbles shrink upon exposure to air-equilibrated liquid but remain stable for hours. Also air bubbles in contact with CO2-saturated water increase in size and Ostwald ripening occurs more rapidly due to the relatively high gas solubility of CO2 in water.
Emotion regulation (ER) refers to the “implementation of a conscious or non-conscious goal to start, stop or otherwise modulate the trajectory of an emotion” (Etkin et al., 2015). Whereas multiple brain areas have been found to be involved in ER, relatively little is known about whether and how ER is associated with the global functioning of brain networks. Recent advances in brain connectivity research using graph-theory based analysis have shown that the brain can be organized into complex networks composed of functionally or structurally connected brain areas. Global efficiency is one graphic metric indicating the efficiency of information exchange among brain areas and is utilized to measure global functioning of brain networks. The present study examined the relationship between trait measures of ER (expressive suppression (ES) and cognitive reappraisal (CR)) and global efficiency in resting-state functional brain networks (the whole brain network and ten predefined networks) using structural equation modeling (SEM). The results showed that ES was reliably associated with efficiency in the fronto-parietal network and default-mode network. The finding advances the understanding of neural substrates of ER, revealing the relationship between ES and efficient organization of brain networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.