Semiconductor quantum dot-conjugated antibodies were successfully developed to label Cryptosporidium parvum and Giardia lamblia. This novel fluorescence system exhibited superior photostability, gave 1.5-to 9-fold-higher signal-to-noise ratios than traditional organic dyes in detecting C. parvum, and allowed dualcolor detection for C. parvum and G. lamblia.
A filter-based microfluidic device was combined with immunofluorescent labeling as a platform to rapidly detect microbial cells. The coin-sized device consisted of micro-chambers, micro-channels and filter weirs (gap = 1-2 microm), and was demonstrated to effectively trap and concentrate microbial cells (i.e., Cryptosporidium parvum and Giardia lamblia), which were larger in size than the weir gap. After sample injection, a staining solution containing fluorescently-labeled antibodies was continuously provided into the device (flow rate = 20 microl min(-1)) to flush the microbial cells toward the weirs and to accelerate the fluorescent labeling reaction. Using a staining solution that was 10 to 100 times more dilute than the recommended concentration used in a conventional glass method, those target cells with a fluorescent signal-to-noise ratio of 12 could be microscopically observed at single-cell level within 2 to 5 min prior to secondary washing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.