The majority of patients with epithelial ovarian cancer are diagnosed at a late stage when the peritoneal metastases exist; however, there is little knowledge of the metastatic process in this disease setting. In this study, we report the identification of the long noncoding RNA LINC00092 as a nodal driver of metastatic progression mediated by cancer-associated fibroblasts (CAF). Prometastatic properties of CAFs and were found to associate with elevated expression of the chemokine CXCL14. In clinical specimens, elevated levels of CXCL14 in CAFs also correlated with poor prognosis. Notably, CXCL14-high CAFs mediated upregulation of LINC00092 in ovarian cancer cells, the levels of which also correlated with poor prognosis in patients. Mechanistic studies showed that LINC00092 bound a glycolytic enzyme, the fructose-2,6-biphosphatase PFKFB2, thereby promoting metastasis by altering glycolysis and sustaining the local supportive function of CAFs. Overall, our study uncovered a positive feedback loop in the metabolism of CXCL14-positive CAFs and ovarian cancer cells that is critical for metastatic progression. .
Tumor hypoxia is a major contributor to resistance to anti-cancer therapies. Given that the results of hypoxia-targeted therapy trials have been disappointing, a more personalized approach may be needed. Here we characterize multi-OMIC molecular features associated with tumor hypoxia and identify molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-cancer drugs. Based on a well-established hypoxia gene expression signature, we classify about 10,000 tumor samples into hypoxia score-high and score-low groups across different cancer types from The Cancer Genome Atlas and demonstrate their prognostic associations. We then identify various types of molecular features associated with hypoxia status that correlate with drug resistance but, in some cases, also with drug sensitivity, contrasting the conventional view that hypoxia confers drug resistance. We further show that 110 out of 121 (90.9%) clinically actionable genes can be affected by hypoxia status and experimentally validate the predicted effects of hypoxia on the response to several drugs in cultured cells. Our study provides a comprehensive molecular-level understanding of tumor hypoxia and may have practical implications for clinical cancer therapy.
It is well known that high-risk human papilloma virus (HR-HPV) infection is strongly associated with cervical cancer and E7 was identified as one of the key initiators in HPV-mediated carcinogenesis. Here we show that lactate dehydrogenase A (LDHA) preferably locates in the nucleus in HPV16-positive cervical tumors due to E7-induced intracellular reactive oxygen species (ROS) accumulation. Surprisingly, nuclear LDHA gains a non-canonical enzyme activity to produce α-hydroxybutyrate and triggers DOT1L (disruptor of telomeric silencing 1-like)-mediated histone H3K79 hypermethylation, resulting in the activation of antioxidant responses and Wnt signaling pathway. Furthermore, HPV16 E7 knocking-out reduces LDHA nuclear translocation and H3K79 tri-methylation in K14-HPV16 transgenic mouse model. HPV16 E7 level is significantly positively correlated with nuclear LDHA and H3K79 tri-methylation in cervical cancer. Collectively, our findings uncover a non-canonical enzyme activity of nuclear LDHA to epigenetically control cellular redox balance and cell proliferation facilitating HPV-induced cervical cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.