Within the second-order perturbation approximation, the physical process of cumulative second-harmonic generation by the primary Lamb wave propagation has been investigated in the time domain. Based on the preconditions that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero and that the phase velocity matching condition is satisfied, we focus on analyzing the influence of mismatching of the group velocities on the generation of the second harmonic by propagation of a primary Lamb wave tone burst with a finite duration. Our analysis indicates that the time-domain envelope of the second harmonic generated is dependent on the propagation distance when both the duration of the primary Lamb wave tone burst and the group velocity mismatch are given. Furthermore, it can be concluded that the integrated amplitude of the time-domain second harmonic, which quantifies the efficiency of the second-harmonic generation, grows with the propagation distance even when the group velocity matching condition is not satisfied. The experimental examination has been performed, and it verifies our theoretical analysis.
Structural strength and integrity of composites can be considerably affected by the low-velocity impact damage due to the unique characteristics of composites, such as layering bonded by adhesive and the weakness to impact. For such damage, there is an urgent need to develop advanced nondestructive testing approaches. Despite the fact that the second harmonics could provide information sensitive to the structural health condition, the diminutive amplitude of the measured second-order harmonic guided wave still limits the applications of the second-harmonic generation–based nonlinear guided wave approach. Herein, laminated composites suffered from low-velocity impact are characterized by use of nonlinear guided waves. An enhancement in the signal-to-noise ratio for the measure of second harmonics is achieved by a phase-reversal method. Results obtained indicate a monotonic correlation between the impact-induced damage in composites and the relative acoustic nonlinear indicator of guided waves. The experimental finding in this study shows that the measure of second-order harmonic guided waves with a phase-reversal method can be a promising indicator to impact damage rendering in an improved and reliable manner.
We present an experimental observation of the generation of the time-domain second harmonic by propagation of the primary Lamb-wave tone-burst. For a case where the phase velocity matching between the primary and the double frequency Lamb waves is satisfied but the group velocity matching between them is not, our observation clearly shows that the duration of the time-domain second-harmonic tone-burst, as well as its integrated amplitude, increases with the increasing propagation distance. This experimental result is consistent with the theoretical prediction and demonstrates that group velocity matching is not absolutely necessary for the generation of the cumulative time-domain second harmonic by primary Lamb-wave propagation.
Photoacoustic tomography is a promising and rapidly developed methodology of biomedical imaging. It confronts an increasing urgent problem to reconstruct the image from weak and noisy photoacoustic signals, owing to its high benefit in extending the imaging depth and decreasing the dose of laser exposure. Based on the time-domain characteristics of photoacoustic signals, a pulse decomposition algorithm is proposed to reconstruct a photoacoustic image from signals with low signal-to-noise ratio. In this method, a photoacoustic signal is decomposed as the weighted summation of a set of pulses in the time-domain. Images are reconstructed from the weight factors, which are directly related to the optical absorption coefficient. Both simulation and experiment are conducted to test the performance of the method. Numerical simulations show that when the signal-to-noise ratio is -4 dB, the proposed method decreases the reconstruction error to about 17%, in comparison with the conventional back-projection method. Moreover, it can produce acceptable images even when the signal-to-noise ratio is decreased to -10 dB. Experiments show that, when the laser influence level is low, the proposed method achieves a relatively clean image of a hair phantom with some well preserved pattern details. The proposed method demonstrates imaging potential of photoacoustic tomography in expanding applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.