Consumers' desires to either reduce the risk of or manage a specific health condition through improved diet have stimulated the research of agricultural products for their potential health beneficial components such as tocopherols and natural antioxidants. Soft wheat is one of the major crops in Maryland, with little information available about its potentially beneficial components. This study examined eight selected Maryland-grown soft wheat varieties or experimental lines for their potential beneficial components including tocopherols, carotenoids, total phenolics and phenolic acids and their antioxidant properties, including Fe(2+) chelating capacity and free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*) ), radical cation ABTS(*)(+), and oxygen radical (ORAC). The results showed that all tested soft wheat grain samples contained alpha-tocopherol, with a range of 3.4-10.1 microg/g. Lutein was the primary carotenoid present in the grain samples at a level of 0.82-1.14 microg/g, along with significant amounts of zeaxanthin and beta-carotene. Vanillic, syringic, p-coumaric, and ferulic acids were found in soluble free, soluble conjugated, and insoluble bound forms in the grain extracts, with ferulic acid as the predominant phenolic acid. The eight soft wheat varieties differed in their antioxidant properties. The tested wheat grain samples exhibited ED(50) values against DPPH(*) of 23-27 mg of grain equiv/mL, ORAC of 32.9-48 micromol of Trolox equiv (TE)/g, and ABTS(*)(+) scavenging capacity of 14.3-17.6 micromol of TE/g. These data suggest the possibility of producing soft wheat varieties rich in selected health beneficial factors for optimum human nutrition though breeding programs.
Cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils were evaluated for their fatty acid composition, carotenoid content, tocopherol profile, total phenolic content (TPC), oxidative stability index (OSI), peroxide value, and antioxidant properties. All tested seed oils contained significant levels of alpha-linolenic acid ranging from 19.6 to 32.4 g per 100 g of oil, along with a low ratio of n-6/n-3 fatty acids (1.64-3.99). The total carotenoid content ranged from 12.5 to 30.0 micromoles per kg oil. Zeaxanthin was the major carotenoid compound in all tested berry seed oils, along with beta-carotene, lutein, and cryptoxanthin. Total tocopherol was 260.6-2276.9 mumoles per kg oil, including alpha-, gamma-, and delta-tocopherols. OSI values were 20.07, 20.30, and 44.76 h for the marionberry, red raspberry, and boysenberry seed oils, respectively. The highest TPC of 2.0 mg gallic acid equivalents per gram of oil was observed in the red raspberry seed oil, while the strongest oxygen radical absorbance capacity was in boysenberry seed oil extract (77.9 micromol trolox equivalents per g oil). All tested berry seed oils directly reacted with and quenched DPPH radicals in a dose- and time-dependent manner. These data suggest that the cold-pressed berry seed oils may serve as potential dietary sources of tocopherols, carotenoids, and natural antioxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.