Teleost B cells have phagocytic activities for ingesting particulate antigens, such as bacteria, in addition to the functional secretion of immunoglobulins (Igs). In the present study, the phagocytic activities of IgM+ B cells under various differentiational conditions residing in peripheral blood leukocytes were investigated in a teleost fish Nile tilapia (Oreochromis niloticus). The IgM+ B cells were recognized as IgMlo or IgMhi subsets based on their membrane IgM (mIgM) levels. The mIgM, secreted IgM (sIgM), major histocompatibility complex class II and reactive oxygen species were detected. Expressions of transcription factors (Pax5 and Blimp-1) and B cell signaling molecules (CD79a, CD79b, BLNK, and LYN) suggested that IgMlo B cells were resembling as plasma-like cells and IgMhi resembling as naïve/mature B cells, respectively. Analysis of phagocytic activities demonstrated that both IgMlo and IgMhi B cells have a similar phagocytic ability (phagocytosis percentage); however, the phagocytic capacity [phagocytic index and the mean fluorescence intensity (MFI)] of IgMhi B cells was significantly higher than that of IgMlo B cells. Taken together, the results indicated that B cell differentiation may cause the decrease of phagocytic capacity but not phagocytic ability of phagocytic IgM+ B cells in teleost. The finding may provide an evolutionary evidence for understanding the greater specialization of the B cell in more sophisticated adaptive humoral immunity, by decreasing phagocytic activity in order to contribute its function more specifically into antibody-secreting.
The innate immune system is an ancient defense system in the process of biological evolution, which can quickly and efficiently resist pathogen infection. In mammals, mannose-binding lectin (MBL) is a key molecule in the innate immune and plays an essential role in the first line of host defense against pathogenic bacteria. However, the evolutionary origins and ancient roles of immune defense of MBL and its mechanism in clearance of microbial pathogens are still unclear, especially in early vertebrates. In this study, Oreochromis niloticus MBL (OnMBL) was successfully isolated and purified from the serum of Nile tilapia (O. niloticus). The OnMBL was able to bind and agglutinate with two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, the OnMBL was able to significantly inhibit the proliferation of pathogenic bacteria and reduce the inflammatory response. Upon bacterial challenge, the downregulation of OnMBL expression by RNA interference could lead to rapid proliferation of the pathogenic bacteria, ultimately resulting in tilapia death. However, the phenotype was rescued by reinjection of the OnMBL, which restored the healthy status of the knockdown tilapia. Moreover, a mechanistic analysis revealed that the OnMBL could clear pathogenic bacteria by collaborating with cell-surface calreticulin to facilitate phagocytosis in a complement activation-independent manner. To our knowledge, these results provide the first evidence on the antibacterial response mechanism of MBL performing evolutionary conserved function to promote opsonophagocytosis of macrophages in early vertebrates and reveals new insights into the understanding of the evolutionary origins and ancient roles basis of the C-type lectins in the innate immune defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.