A facile and universal approach to prepare graphene-based nanocomposites by in situ nucleation and growth of diverse noble metals, metal oxides and semiconducting nanoparticles on the surface of RGO is proposed.
Stimuli-responsive photoluminescent (PL) materials have been widely used as fluorescent ink for data security applications. However, traditional fluorescent inks are limited in maintaining the secrecy of information because the inks are usually visible by naked eyes either under ambient light or UV-light illumination. Here, we introduced metal-free water-soluble graphitic carbon nitride quantum dots (g-CNQDs) as invisible security ink for information coding, encryption, and decryption. The information written by the g-CNQDs is invisible in ambient light and UV light, but it can be readable by a fluorescence microplate reader. Moreover, the information can be encrypted and decrypted by using oxalic acid and sodium bicarbonate as encryption reagent and decryption reagent, respectively. Our findings provide new opportunities for high-level information coding and protection by using water-soluble g-CNQDs as invisible security ink.
Molybdenum disulfide (MoS2) has attracted increasing research interest recently due to its unique physical, optical and electrical properties, correlated with its 2D ultrathin atomic-layered structure. Until now, however, great efforts have focused on its applications such as lithium ion batteries, transistors, and hydrogen evolution reactions. Herein, for the first time, MoS2 nanosheets are discovered to possess an intrinsic peroxidase-like activity and can catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction. The catalytic activity follows the typical Michaelis-Menten kinetics and is dependent on temperature, pH, H2O2 concentration, and reaction time. Based on this finding, a highly sensitive and selective colorimetric method for H2O2 and glucose detection is developed and applied to detect glucose in serum samples. Moreover, a simple, inexpensive, instrument-free and portable test kit for the visual detection of glucose in normal and diabetic serum samples is constructed by utilizing agarose hydrogel as a visual detection platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.