Objective
To measure the palatal thickness of both hard and soft tissues and to determine safe regions for the placement of mini-implants. The influences of sex and age on palatal thickness were also examined.
Materials and Methods
Cone-beam computed tomography images of 30 patients (12 males, 18 females), including 15 adults and 15 adolescents, were used in this study. The thicknesses of palatal hard tissue, soft tissue, and hard+soft tissues were measured at the coronal planes of first premolars, second premolars, first molars, and second molars (P1, P2, M1, and M2 planes, respectively).
Results
The hard tissue was thickest at the P1 plane, followed by at the P2, M1, and M2 planes, while the thickness of soft tissue was similar among the four planes. The trends in the changes of palatal thickness from midline to the lateral sides (V-pattern) were similar for the four planes. Palatal thickness was influenced by sex, age, and their interaction. Mapping of recommended and optimal sites for palatal mini-implants was accomplished.
Conclusions
Sex and age factors could influence palatal thickness. Therefore, the findings might be helpful for clinicians in guiding them to choose the optimal sites for palatal mini-implants.
Periodontitis is a high prevalence oral disease which damages both the hard and soft tissue of the periodontium, resulting in tooth mobility and even loss. Existing clinical treatment methods cannot fully achieve periodontal tissue regeneration; thus, due to the unique characteristics of mesenchymal stem cells (MSCs), they have become the focus of attention and may be the most promising new therapy for periodontitis. Accumulating evidence supports the view that the role of MSCs in regenerative medicine is mainly achieved by the paracrine pathway rather than direct proliferation and differentiation at the injured site. Various cells release lipid-enclosed particles known as extracellular vesicles (EVs), which are rich in bioactive substances. In periodontitis, EVs play a pivotal role in regulating the biological functions of both periodontal tissue cells and immune cells, as well as the local microenvironment, thereby promoting periodontal injury repair and tissue regeneration. As a cell-free therapy, MSCs-derived extracellular vesicles (MSC-EVs) have some preponderance on stability, immune rejection, ethical supervision, and other problems; therefore, they may have a broad clinical application prospect. Herein, we gave a brief introduction to MSC-EVs and focused on their mechanisms and clinical application in periodontal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.