In this paper, a hybrid control strategy is studied and implemented on an Inductive Power Transfer (IPT) system to simultaneously realize zero-voltage switching (ZVS) and constant current (CC) and constant voltage (CV) battery charging. A steady-state analysis of pulse frequency modulation was conducted, based on the characteristic of voltage gain versus switching frequency, and CC and CV charging modes were promised. The ZVS of the inverter was obtained by satisfying the minimum requirement of full discharge of the junction capacitor on the MOSFETs using a commutation current during the dead-time interval. Two control degrees of freedom are needed to realize the two control targets. This hybrid control strategy adopts a self-oscillating (SO) control to achieve ZVS and phase shift (PS) control and a constant output for the series–series (SS)-compensated IPT system. To validate the hybrid control strategy, a 1.6 kW prototype with 360–440 V input voltage and 250–400 V output voltage was built and the experimental results show that the peak efficiency can reach 96.1%. Compared with the conventional variable frequency (VF) control, the hybrid control method proves that an additional control variable can fulfill the control target in a more flexible manner, which makes the switching frequency close to the resonant frequency during the charging process, minimizing the reactive current in the resonant tank and improving system efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.