Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge. Here, we review the concept and practices of Green Super Rice (GSR) that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture. The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources, functional gene discoveries, and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving, environmentally friendly crop production systems. We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agriculture and better nourish the world population.
BackgroundRice is highly sensitive to temperature fluctuations. Recently, the frequent occurrence of high temperature stress has heavily influenced rice production. Proper heading date in specific environmental conditions could ensure high grain yield. Rice heading greatly depends on the accurate measurement of environmental changes, particularly in day length and temperature. In contrary to the detailed understanding of the photoperiod pathway, little has been known about how temperature regulates the genetic control of rice heading.ResultsNear isogenic lines that were segregated for qHd1, were developed from a cross between indica rice varieties Zhenshan 97 (ZS97) and Milyang 46 (MY46). Using a five sowing-date experiment in the paddy field, we observed the involvement of qHd1 in temperature responses. With the gradual increase of temperature from Trial I to V, heading date of MY46 homozygotes continued to decrease for about 5 d per trial from 76 to 58 d, while that of ZS97 homozygotes was promoted at the same rate from Trial I to III and then stabilized at 69 d. This thermal response was confirmed in a temperature-gradient experiment conducted in the phytotron. It is also found that tolerance of the ZS97 allele to heading acceleration at high temperature was associated with higher grain weight that resulted in higher grain yield. Then, by qRT-PCR and RNA-seq, we found the pathway OsMADS51-Ehd1-RFT1/Hd3a underlying the qHd1-mediated floral response to temperature. By sequence comparison, OsMADS51 for qHd1 displayed a 9.5-kb insertion in the 1st intron of the ZS97 allele compared to the MY46 allele. Furthermore, this large insertion is commonly found in major early-season indica rice varieties, but not in the middle- and late-season ones, which corresponds to the requirement for high-temperature tolerance during the heading and grain-filling stages of early-season rice.ConclusionsBeneficial alleles at qHd1 confer tolerance to high temperatures at the heading and grain-filling stages, playing a significant role in the eco-geographical adaptation of early-season indica rice during modern breeding. These results, together with the underlying OsMADS51-Ehd1-RFT1/Hd3a floral pathway, provide valuable information for better understanding the molecular mechanism of temperature responsive regulation of heading date and yield traits in rice.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1330-5) contains supplementary material, which is available to authorized users.
BackgroundGrain size is a key determinant of grain weight and a trait having critical influence on grain quality in rice. While increasing evidences are shown for the importance of minor-effect QTL in controlling complex traits, the attention has not been given to grain size until recently. In previous studies, five QTL having small effects for grain size were resolved on the long arm of chromosome 1 using populations derived from indica rice cross Zhenshan 97///Zhenshan 97//Zhenshan 97/Milyang 46. One of them, qTGW1.2c that was located in a 2.1-Mb region, was targeted for fine-mapping in the present study.ResultsFirstly, the qTGW1.2c region was narrowed down into 1.1 Mb by determining genotypes of the cross-over regions using polymorphic markers newly developed. Then, one BC2F9 plant that was only heterozygous in the updated QTL region was identified. A total of 12 populations in generations from BC2F11:12 to BC2F15:16 were derived and used for QTL mapping. Two QTL linked in a 460-kb region were separated. The qGS1-35.2 was delimited into a 57.7-kb region, containing six annotated genes of which five showed nucleotide polymorphisms between the two parental lines. Quantitative real-time PCR detected expression differences between near isogenic lines for qGS1-35.2 at three of the six annotated genes. This QTL affected grain length and width with opposite allelic directions, exhibiting significant effect on ratio of grain length to width but showing little influence on yield traits. The other QTL, qGW1-35.5, was located within a 125.5-kb region and found to primarily control grain width and consequently affect grain weight.ConclusionsOur work lays a foundation for cloning of two minor QTL for grain size that have potential application in rice breeding. The qGS1-35.2 could be used to modify grain appearance quality without yield penalty because it affects grain shape but hardly influences grain yield, while qGW1-35.5 offers a new gene recourse for enhancing grain yield since it contributes to grain size and grain weight simultaneously.Electronic supplementary materialThe online version of this article (10.1186/s12284-018-0236-z) contains supplementary material, which is available to authorized users.
Uniformity of stem height in rice directly affects crop yield potential and appearance, and has become a vital index for rice improvement. In the present study, a doubled haploid (DH) population, derived from a cross between japonica rice Chunjiang 06 and indica rice TN1 was used to analyze the quantitative trait locus (QTL) for three related traits of panicle‐layer‐uniformity; that is, the tallest panicle height, the lowest panicle height and panicle layer disuniformity in two locations: Hangzhou (HZ) and Hainan (HN). A total of 16 QTLs for three traits distributed on eight chromosomes were detected in two different environments. Two QTLs, qTPH‐4 and qTPH‐8 were co‐located with the QTLs for qLPH‐4 and qLPH‐8, which were only significant in the HZ environment, whereas the qTPH‐6 and qLPH‐6 located at the same interval were only significant in the HN environment. Two QTLs, qPLD‐10‐1 and qPLD‐10‐2, were closely linked to qTPH‐10, and they might have been at the same locus. One QTL, qPLD‐3, was detected in both environments, explaining more than 23% of the phenotypic variations. The CJ06 allele of qPLD‐3 could increase the panicle layer disuniformity by 9.23 and 4.74 cm in the HZ and HN environments. Except for qPLD‐3, almost all other QTLs for the same trait were detected only in one environment, indicating that these three traits were dramatically affected by environmental factors. The results may be useful for elucidation of the molecular mechanism of panicle‐layer‐uniformity and marker assisted breeding for super‐rice.
Chromium (Cr) pollution threatens plant development and growth. Application of melatonin (Mel) is emerging as an effective ally to resist stress, but how Mel ameliorates seed germination upon exposure to heavy metals is poorly understood. Here, we found (i) that seed priming with Mel considerably alleviated Cr stress during rice (Oryza sativa) seed germination and (ii) that germination performance was significantly improved in suppressor of the G2 allele of skp1 (OsSGT1) overexpression lines, while mutations of OsSGT1 and/or abscisic acid-insensitive 5 (OsABI5) noticeably abrogated such Mel-induced tolerance to Cr. Complementation assays suggested that the restored expression of OsSGT1 could not rescue the weak germination of sgt1-1abi5 under Cr stress, even upon Mel priming, but the expression of OsABI5 driven by the promoter of OsSGT1 significantly restored the Mel-ameliorated germination and the expression of ascorbate peroxidase 1 (OsAPX1) in sgt1-1abi5. Further analysis indicated that OsABI5 directly regulated the transcriptional expression of OsAPX1, whose encoding products promoted H 2 O 2 scavenging to maintain redox homeostasis, which is essential for germination. Collectively, this work demonstrates that OsSGT1 regulates OsABI5 to target OsAPX1, mediating the stimulatory effects of Mel on germination of Cr-stressed seeds, which provides a guide for the application of Mel in rice production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.