Self-control is important for long-term success and could be a protective factor against maladaptive behaviours such as excessive gaming activity or Internet gaming disorder (IGD). However, the neurobiological basis of self-control and its relationship to IGD remain elusive. Using resting-state fMRI data from 89 participants aged from 18 to 26, we found that self-control and the number of IGD symptoms (IGD-S) were positively and negatively correlated with functional connectivity between right ventral striatum (rVS) and dorsal anterior cingulate cortex (dACC), respectively. A mediation analysis indicated that self-control influenced IGD-S partially through the rVS-dACC connectivity. In addition, step-wise regression analyses revealed that the rVS connectivity in a reward-anticipation limbic pathway contributed to IGD-S but not self-control, independent of the dACC pathway. These results suggest that the cingulate-ventral striatal functional connectivity may serve as an important neurobiological underpinning of selfcontrol to regulate maladaptive behaviours such as these manifesting IGD through striatal circuitry balance.
Working memory (WM) is essential for cognition, but the underlying neural mechanisms remain elusive. From a hierarchical processing perspective, this paper proposed and tested a hypothesis that a domain-general network at the top of the WM hierarchy can interact with distinct domain-preferential intermediate circuits to support WM. Employing a novel N-back task, we first identified the posterior superior temporal gyrus (pSTG), middle temporal area (MT), and postcentral gyrus (PoCG) as intermediate regions for biological motion and shape motion processing, respectively. Using further psychophysiological interaction analyses, we delineated a frontal–parietal network (FPN) as the domain-general network. These results were further verified and extended by a delayed match to sample (DMS) task. Although the WM load-dependent and stimulus-free activations during the DMS delay phase confirm the role of FPN as a domain-general network to maintain information, the stimulus-dependent activations within this network during the DMS encoding phase suggest its involvement in the final stage of the hierarchical processing chains. In contrast, the load-dependent activations of intermediate regions in the N-back task highlight their further roles beyond perception in WM tasks. These results provide empirical evidence for a hierarchical processing model of WM and may have significant implications for WM training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.