Diabetic nephropathy (DN) is among the most common complications of diabetes mellitus. The disorder is associated with a decrease in the activity of the nitric oxide synthase/nitric oxide system. Piperazine ferulate (PF) is widely used for the treatment of kidney disease in China. The aim of the present study was to examine the effects of PF on streptozotocin (STZ)-induced DN and the underlying mechanism of this process. STZ-induced diabetic mice were intragastrically administered PF (100, 200 and 400 mg/kg/body weight/day) for 12 weeks. At the end of the treatment period, the parameters of 24-h albuminuria and blood urea nitrogen, creatinine and oxidative stress levels were measured. Hematoxylin and eosin staining, periodic acid-Schiff staining and electron microscopy were used to evaluate the histopathological alterations. mRNA and protein expression of endothelial nitric oxide synthase (eNOS) were measured by quantitative polymerase chain reaction and western blotting, respectively. PF significantly decreased blood urea nitrogen and creatinine levels and 24-h albuminuria, and it alleviated oxidative stress, improved glomerular basement membrane thickness and caused an upregulation in eNOS expression and activity levels in diabetic mice. In addition, high glucose decreased eNOS expression levels, whereas PF caused a reversal in the nitric oxide (NO) levels of glomerular endothelial cells. The present results suggested that PF exhibited renoprotective effects on DN. The mechanism of its action was associated with the regulation of eNOS expression and activity.
Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology and the use of appropriate detection techniques to control its toxicity at safe levels are extremely important for medicine efforts and human health. This review discusses the mechanism driving ACV’s ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the toxicological studies of ACV, which are essential for human use and dosing. Analytical methods, including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow injection–chemiluminescence (FI-CL) are also highlighted. A brief description of the characteristics of each of these methods is also presented. Finally, insight is provided for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This review provides a comprehensive summary of the past life and future challenges of ACV.
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Hyperglycemia-induced glomerular mesangial cells injury is associated with microvascular damage, which is an important step in the development of DN. Piperazine ferulate (PF) has been reported to exert protective effects against the progression of DN. However, whether PF prevents high glucose (HG)-induced mesangial cell injury remains unknown. The aim of the present study was to investigate the effects of PF on HG-induced mesangial cell injury and to elucidate the underlying mechanisms. Protein and mRNA expression levels were determined via western blot analysis and reverse transcription-quantitative PCR, respectively. IL-6 and TNF-α levels were measured using ELISA. Reactive oxygen species levels and NF-κB p65 nuclear translation were determined via immunofluorescence analysis. Apoptosis was assessed by measuring lactate dehydrogenase (LDH) release, as well as using MTT and flow cytometric assays. The mitochondrial membrane potential of mesangial cells was determined using the JC-1 kit. The results revealed that LDH release were increased; however, cell viability and mitochondrial membrane potential were decreased in the HG group compared with the control group. These changes were inhibited after the mesangial cells were treated with PF. Moreover, PF significantly inhibited the HG-induced production of inflammatory cytokines and the activation of NF-κB in mesangial cells. PF also attenuated the HG-induced upregulation of the expression levels of fibronectin and collagen 4A1. Furthermore, the overexpression of p66 Src homology/collagen (Shc) abolished the protective effect of PF on HG-induced mesangial cell injury. In vivo experiments revealed that PF inhibited the activation of inflammatory signaling pathways, glomerular cell apoptosis and mesangial matrix expansion in diabetic mice. Collectively, the present findings demonstrated that PF attenuated HG-induced mesangial cells injury by inhibiting p66 Shc .
Tenofovir disoproxil fumarate (TDF) is an antiretroviral medication with significant curative effects, so its quantitative detection is important for human health. At present, there are few studies on the detection of TDF by electrochemical sensors. This work can be a supplement to the electrochemical detection of TDF. Moreover, bare electrodes are susceptible to pollution, and have high overvoltage and low sensitivity, so it is crucial to find a suitable electrode material. In this work, zirconium oxide (ZrO2) that has a certain selectivity to phosphoric acid groups was synthesized by a hydrothermal method with zirconyl chloride octahydrate as the precursor. A composite modified glassy carbon electrode for zirconium oxide-chitosan-multiwalled carbon nanotubes (ZrO2-CS-MWCNTs/GCE) was used for the first time to detect the TDF, and achieved rapid, sensitive detection of TDF with a detection limit of sub-micron content. The ZrO2-CS-MWCNTs composite was created using sonication of a mixture of ZrO2 and CS-MWCNTs solution. The composite was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). Electrochemical analysis was performed using differential pulse voltammetry (DPV). Compared with single-material electrodes, the ZrO2-CS-MWCNTs/GCE significantly improves the electrochemical sensing of TDF due to the synergistic effect of the composite. Under optimal conditions, the proposed method has achieved good results in linear range (0.3~30 μM; 30~100 μM) and detection limit (0.0625 μM). Moreover, the sensor has the merits of simple preparation, good reproducibility and good repeatability. The ZrO2-CS-MWCNTs/GCE has been applied to the determination of TDF in serum and urine, and it may be helpful for potential applications of other substances with similar structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.