Wu-tou decoction (WTD) is a classic traditional Chinese medicine formula and has been extensively used for the treatment of rheumatoid arthritis (RA). Previous reports indicate that WTD possesses anti-inflammatory and antinociceptive activities, and inhibits the development of arthritic joints and disease severity of collagen-induced arthritis (CIA) or adjuvant-induced rats; however, its action on angiogenesis of RA has not been clarified. This study aims to determine the anti-angiogenic activity of WTD in CIA rats and in various angiogenesis models. Our data showed that WTD (0.95, 1.9, and 3.8 g/kg) markedly reduced the immature blood vessels in synovial membrane tissues of inflamed joints from CIA rats. It also inhibited in vivo angiogenesis in chick embryo and VEGF-induced microvessel sprout formation ex vivo. Meanwhile, WTD suppressed VEGF-/MH7A-induced migration, invasion, adhesion, and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, WTD significantly reduced the expression of angiogenic activators, including vascular endothelial growth factor (VEGF), VEGFR2, interleukin (IL)-1β, IL-17, transforming growth factor-β, platelet-derived growth factor, placenta growth factor, angiopoietin (Ang) I and Ang II in synovium of CIA rats, and/or in HUVECs. More interestingly, WTD blocked the autophosphorylation of VEGF-induced VEGFR2 and consequently downregulated the signaling pathways of activated AKT, ERK1/2, JNK, and p38 in VEGF-induced HUVECs. These findings suggest for the first time that WTD possesses the anti-angiogenic effect in RA in vivo, ex vivo, and in vitro by interrupting the targeting of VEGFR2 activation.
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.